Deep reinforcement learning for computational fluid dynamics on HPC systems

计算机科学 计算流体力学 解算器 强化学习 可扩展性 杠杆(统计) 超级计算机 计算科学 人工智能 并行计算 机械 数据库 物理 程序设计语言
作者
Marius Kurz,Philipp Offenhäuser,Dominic Viola,Oleksandr Shcherbakov,Michael Resch,Andrea Beck
出处
期刊:Journal of Computational Science [Elsevier BV]
卷期号:65: 101884-101884 被引量:34
标识
DOI:10.1016/j.jocs.2022.101884
摘要

Reinforcement learning (RL) is highly suitable for devising control strategies in the context of dynamical systems. A prominent instance of such a dynamical system is the system of equations governing fluid dynamics. Recent research results indicate that RL-augmented computational fluid dynamics (CFD) solvers can exceed the current state of the art, for example in the field of turbulence modeling. However, while in supervised learning, the training data can be generated a priori in an offline manner, RL requires constant run-time interaction and data exchange with the CFD solver during training. In order to leverage the potential of RL-enhanced CFD, the interaction between the CFD solver and the RL algorithm thus have to be implemented efficiently on high-performance computing (HPC) hardware. To this end, we present Relexi as a scalable RL framework that bridges the gap between machine learning workflows and modern CFD solvers on HPC systems providing both components with its specialized hardware. Relexi is built with modularity in mind and allows easy integration of various HPC solvers by means of the in-memory data transfer provided by the SmartSim library. Here, we demonstrate that the Relexi framework can scale up to hundreds of parallel environment on thousands of cores. This allows to leverage modern HPC resources to either enable larger problems or faster turnaround times. Finally, we demonstrate the potential of an RL-augmented CFD solver by finding a control strategy for optimal eddy viscosity selection in large eddy simulations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果语梦完成签到 ,获得积分10
刚刚
务实的续发布了新的文献求助30
1秒前
南瓜汤完成签到,获得积分10
1秒前
研友_VZG7GZ应助aaronpancn采纳,获得10
2秒前
2秒前
3秒前
Aura完成签到,获得积分10
3秒前
大模型应助陌路人采纳,获得10
3秒前
4秒前
luochen完成签到,获得积分10
4秒前
5秒前
ShyerC完成签到,获得积分10
5秒前
5秒前
乖猴猴发布了新的文献求助10
5秒前
务实的续完成签到,获得积分10
6秒前
charon完成签到,获得积分20
6秒前
6秒前
Nature完成签到,获得积分10
7秒前
寒雨发布了新的文献求助10
7秒前
缥缈耷发布了新的文献求助10
7秒前
charon发布了新的文献求助10
9秒前
Levi李完成签到 ,获得积分10
9秒前
10秒前
包包发布了新的文献求助10
11秒前
sh发布了新的文献求助10
11秒前
12秒前
mw发布了新的文献求助10
12秒前
Ngu完成签到,获得积分10
15秒前
15秒前
yyou完成签到 ,获得积分10
15秒前
从容问雁完成签到,获得积分10
15秒前
16秒前
含糊完成签到 ,获得积分10
16秒前
Hhh发布了新的文献求助10
16秒前
碳土不凡完成签到 ,获得积分10
16秒前
真的研究牲完成签到,获得积分10
17秒前
阿萌完成签到 ,获得积分10
18秒前
Hello应助开心衬衫采纳,获得10
18秒前
18秒前
在水一方应助Ying采纳,获得10
18秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734798
求助须知:如何正确求助?哪些是违规求助? 3278733
关于积分的说明 10011078
捐赠科研通 2995408
什么是DOI,文献DOI怎么找? 1643417
邀请新用户注册赠送积分活动 781158
科研通“疑难数据库(出版商)”最低求助积分说明 749285