Development of a Machine Learning Model Using Electrocardiogram Signals to Determine Acute Pulmonary Embolism

医学 肺栓塞 队列 内科学 介绍 心脏病学 家庭医学
作者
Ryan A. Meverden,Damon E. Houghton,Abraham Báez Suárez,José R. Medina‐Inojosa,Francisco Lopez‐Jimenez,Ana I. Casanegra,Betsy J. Medina Inojosa,Zachi I. Attia,Paul A. Friedman,Waldemar E. Wysokiński
出处
期刊:Blood [American Society of Hematology]
卷期号:140 (Supplement 1): 8511-8512 被引量:1
标识
DOI:10.1182/blood-2022-163369
摘要

Background. Patients with acute pulmonary embolism (PE) benefit from immediate initiation of anticoagulation but similar symptoms can come from clinical conditions for which anticoagulation can be detrimental. A method for immediate, bedside diagnosis or exclusion of PE is not available. Objective. To develop an artificial intelligence (AI) model enabling analysis of 12-lead electrocardiogram (ECG) to detect the presence of acute PE and the categories of acute PE with right ventricular strain (RVS). Methods. One cohort of patients was selected by using a newly developed highly accurate natural language processing (NLP) model to analyze radiology reports of CT angiogram (CTA) and ECG within 6 hours before or after CTA from Mayo Clinic enterprise sites consisting of three tertiary referral centers (Rochester, MN, Phoenix, AZ, and Jacksonville, FL) and regional Mayo Clinic Health System sites in MN, WI, and IA. We identified patients with acute PE, acute PE with RVS, acute saddle PE, and patients with no PE on the CTA. Another cohort consisted of consecutive patients with acute PE who were enrolled into the Mayo Thrombophilia Clinic Registry (TCR) between March 1, 2013 and May 31, 2022 and prospectively followed. For this group, AHA criteria were used to classify PE as massive, submassive, and low risk PE category which for this study was described as PE with no right ventricular dysfunction (NRVD). For this cohort, ECG performed within 24 hours before or after CTA was analyzed. We allocated patients with positive PE testing and negative PE to the training, internal validation, and testing datasets in a 7:1:2 ratio to develop and validate an AI-enabled algorithm using a convolutional neural network to detect the ECG signature of any acute PE, PE with RVS or saddle PE (RVS/SPE) and massive/submassive PE. We calculated the area under the curve of the receiver operating characteristic curve (AUROC) for the internal validation dataset to select a probability threshold, which we applied to the testing dataset. We evaluated model performance on the testing dataset by calculating the AUROC, accuracy, sensitivity, and specificity. Results. NLP identified a total of 80,432 patients with ECG performed within 6 hours before or after CTA who were not a part of the TCR. This cohort was subdivided into 79,894 consisting of acute PE and no PE and another group of 73,609 consisting of either acute PE with RVS/SPE, and no PE. In the former group, 7,423 (9.29%) had acute PE (mean age 63.7±15.9, 46.1% female), and in the latter group, 1,138 (1.55%) had acute PE with RVS/SPE (mean age 65.6±14.1, 45.7% female). Both groups had the same number of negative studies (72,471) for any PE (mean age 60.5±17.6, 52.3% female). Within the group of 4,818 TCR patients with acute venous thromboembolism, 1,007 had acute PE and ECG 24 hours before or after CTA (mean age 62.7±14.6, 43.8% female) including 44 with massive, 317 submassive, 508 NRVD, and 138 with subsegmental PE. For the TCR cohort, we created a control group from NLP identified cases with CTA negative for PE by selecting 6,774 patients that were matched (by age, sex) with acute PE cases from the TCR. The deep neural network prediction of acute PE in patients identified by NLP from Mayo Clinic sites to those without any PE was modest (AUROC 0.6929, see Figure 1). The sensitivity was 63.54% and specificity of 64.66%. This was associated with the positive predictive value (PPV) of 15.55% and high negative predictive value (NPV) of 94.54%. The performance of the deep neural network prediction for the presence of RVS/SPE to the group with negative testing for any PE was better (AUROC 0.8041). The sensitivity was 68.42% and specificity of 74.77%. This was associated with the PPV of 4.07% and NPV as high as 99.34%. The deep neural network prediction of any acute PE from TCR patients was similar to the NLP selected cohort from Mayo Clinic sites (AUROC 0.6756). The sensitivity was 54.95% and specificity of 69.70%. This was associated with the PPV of 21.18% and NPV of 91.26%. Prediction of massive or submassive PE from the TCR group was very well demonstrated within the TCR group (Figure 2). Conclusions. The AI-based analysis of 12-lead ECG shows modest detection power for acute PE, but is accurate for high risk PE detection. Moreover, it provides a fast and very reliable way to exclude the presence of severe PE and therefore the need for immediate anticoagulation and fibrinolytic therapy. Figure 1View largeDownload PPTFigure 1View largeDownload PPT Close modal

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
菠萝菠萝哒应助JIAO采纳,获得10
1秒前
2秒前
深情安青应助yuyu采纳,获得30
2秒前
wyp完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
csu_zs完成签到,获得积分10
5秒前
自由雨莲发布了新的文献求助10
6秒前
Jasper应助十八采纳,获得10
6秒前
咔滋脆鸡腿堡完成签到 ,获得积分10
7秒前
hydwyh发布了新的文献求助10
8秒前
9秒前
ding应助yangyang采纳,获得10
9秒前
Y2024发布了新的文献求助10
10秒前
12秒前
12秒前
拓跋天思完成签到,获得积分10
12秒前
共享精神应助开心的西瓜采纳,获得10
12秒前
隐形曼青应助自由雨莲采纳,获得10
12秒前
合适的冰香关注了科研通微信公众号
12秒前
传奇3应助逃离鸭科夫采纳,获得10
14秒前
科研通AI2S应助半圆亻采纳,获得10
15秒前
16秒前
椒盐鲨鱼皮完成签到,获得积分10
18秒前
在水一方应助十八采纳,获得10
18秒前
杜杜发布了新的文献求助20
18秒前
汉堡包应助pierre_gasly采纳,获得10
19秒前
20秒前
shelemi发布了新的文献求助10
21秒前
21秒前
无限孤风关注了科研通微信公众号
22秒前
Alicia发布了新的文献求助10
23秒前
23秒前
23秒前
24秒前
霸气谷雪发布了新的文献求助10
24秒前
kery发布了新的文献求助10
25秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 930
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3383617
求助须知:如何正确求助?哪些是违规求助? 2997818
关于积分的说明 8776615
捐赠科研通 2683405
什么是DOI,文献DOI怎么找? 1469647
科研通“疑难数据库(出版商)”最低求助积分说明 679488
邀请新用户注册赠送积分活动 671756