Segmentation of kidney mass using AgDenseU-Net 2.5D model

分割 计算机科学 人工智能 体积热力学 公制(单位) 医学 内科学 运营管理 量子力学 物理 经济
作者
Peng Sun,Zengnan Mo,Fangrong Hu,Xin Song,Taiping Mo,Bonan Yu,Yewei Zhang,Zhencheng Chen
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:150: 106223-106223 被引量:6
标识
DOI:10.1016/j.compbiomed.2022.106223
摘要

The Kidney and Kidney Tumor Segmentation Challenge 2021 (KiTS21) released a kidney CT dataset with 300 patients. Unlike KiTS19, KiTS21 provided a cyst category. Therefore, the segmentation of kidneys, tumors, and cysts will be able to assess the complexity and aggressiveness of kidney mass. Deep learning models can save medical resources, but 3D models still have some disadvantages, such as the high cost of computing resources. This paper proposes a scheme that saves computing resources and achieves the segmentation of kidney mass in two steps. First, we preprocess the kidney volume data using the automatic down-sampling method of 3D images, reducing the volume while preserving the feature information. Second, we finely segment kidneys, tumors, and cysts using the AgDenseU-Net (Attention gate DenseU-Net) 2.5D model. KiTS21 proposed using Hierarchical Evaluation Classes (HECs) to compute a metric for the superset: the HEC of kidney considers kidneys, tumors, and cysts as the foreground to compute segmentation performance; the HEC of kidney mass considers both tumor and cyst as the foreground classes; the HEC of tumor considers tumor as the foreground only. For KiTS21, our model achieved a dice score of 0.971 for the kidney, 0.883 for the mass, and 0.815 for the tumor. In addition, we also tested segmentation results without HECs, and our model achieved a dice score of 0.950 for the kidney, 0.878 for the tumor, and 0.746 for the cyst. The results demonstrate that the method proposed in this paper can be used as a reference for kidney tumor segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助非而者厚采纳,获得10
刚刚
jj完成签到,获得积分10
刚刚
Zx_1993应助香菜采纳,获得10
1秒前
若水完成签到,获得积分0
1秒前
2秒前
飞云完成签到,获得积分10
2秒前
曾经如是完成签到,获得积分10
4秒前
6秒前
霜糖完成签到,获得积分10
7秒前
9秒前
高大厉完成签到 ,获得积分10
10秒前
科研雪完成签到,获得积分10
11秒前
冷漠的布丁完成签到,获得积分10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
cdercder应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
cdercder应助科研通管家采纳,获得20
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
xiao发布了新的文献求助10
12秒前
彩色尔珍发布了新的文献求助10
13秒前
13秒前
今后应助平常寄翠采纳,获得10
17秒前
科研通AI6应助科研雪采纳,获得10
18秒前
梓泽丘墟发布了新的文献求助100
18秒前
打打应助7676采纳,获得10
20秒前
llz发布了新的文献求助10
20秒前
21秒前
21秒前
充电宝应助xiao采纳,获得100
21秒前
22秒前
拼搏书琴完成签到 ,获得积分10
22秒前
ooooo完成签到,获得积分10
23秒前
腼腆的又槐完成签到,获得积分10
23秒前
JIA发布了新的文献求助50
23秒前
lilili应助刘老哥6采纳,获得10
24秒前
勤恳逍遥完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419502
求助须知:如何正确求助?哪些是违规求助? 4534740
关于积分的说明 14146552
捐赠科研通 4451384
什么是DOI,文献DOI怎么找? 2441744
邀请新用户注册赠送积分活动 1433305
关于科研通互助平台的介绍 1410587