Segmentation of kidney mass using AgDenseU-Net 2.5D model

分割 计算机科学 人工智能 体积热力学 公制(单位) 医学 内科学 运营管理 量子力学 物理 经济
作者
Peng Sun,Zengnan Mo,Fangrong Hu,Xin Song,Taiping Mo,Bonan Yu,Yewei Zhang,Zhencheng Chen
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:150: 106223-106223 被引量:13
标识
DOI:10.1016/j.compbiomed.2022.106223
摘要

The Kidney and Kidney Tumor Segmentation Challenge 2021 (KiTS21) released a kidney CT dataset with 300 patients. Unlike KiTS19, KiTS21 provided a cyst category. Therefore, the segmentation of kidneys, tumors, and cysts will be able to assess the complexity and aggressiveness of kidney mass. Deep learning models can save medical resources, but 3D models still have some disadvantages, such as the high cost of computing resources. This paper proposes a scheme that saves computing resources and achieves the segmentation of kidney mass in two steps. First, we preprocess the kidney volume data using the automatic down-sampling method of 3D images, reducing the volume while preserving the feature information. Second, we finely segment kidneys, tumors, and cysts using the AgDenseU-Net (Attention gate DenseU-Net) 2.5D model. KiTS21 proposed using Hierarchical Evaluation Classes (HECs) to compute a metric for the superset: the HEC of kidney considers kidneys, tumors, and cysts as the foreground to compute segmentation performance; the HEC of kidney mass considers both tumor and cyst as the foreground classes; the HEC of tumor considers tumor as the foreground only. For KiTS21, our model achieved a dice score of 0.971 for the kidney, 0.883 for the mass, and 0.815 for the tumor. In addition, we also tested segmentation results without HECs, and our model achieved a dice score of 0.950 for the kidney, 0.878 for the tumor, and 0.746 for the cyst. The results demonstrate that the method proposed in this paper can be used as a reference for kidney tumor segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
1秒前
huan发布了新的文献求助10
1秒前
2秒前
Lee发布了新的文献求助10
2秒前
2秒前
烟花应助aaaaaah采纳,获得30
3秒前
生与朝露同完成签到,获得积分10
3秒前
5秒前
6秒前
huan完成签到,获得积分10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
liuzz完成签到,获得积分20
6秒前
Alex应助凌风采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
Lucas应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
xxfsx应助科研通管家采纳,获得10
7秒前
7秒前
大个应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
xxfsx应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得30
8秒前
zeefly7发布了新的文献求助10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
8秒前
Owen应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5491528
求助须知:如何正确求助?哪些是违规求助? 4589949
关于积分的说明 14428449
捐赠科研通 4522201
什么是DOI,文献DOI怎么找? 2477761
邀请新用户注册赠送积分活动 1462901
关于科研通互助平台的介绍 1435597