亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Rapid discovery of inorganic-organic solid composite electrolytes by unsupervised learning

电解质 复合数 结晶度 计算机科学 稀缺 材料科学 吞吐量 化学 电极 复合材料 电信 算法 物理化学 经济 微观经济学 无线
作者
Kehao Tao,Zhilong Wang,Yanqiang Han,Jinjin Li
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:454: 140151-140151 被引量:24
标识
DOI:10.1016/j.cej.2022.140151
摘要

• A new physically interpretable descriptor is designed for solid composite electrolyte. • The proposed framework solves the problem of data scarcity of solid composite electrolyte, shortening the calculation cycle by 23 years. • A new model for predicting the conductivity of SCE agrees well with experiments. Inorganic-organic solid composite electrolytes (SCEs) have been widely concerned owing to their excellent film forming performance, good wettability and low flammability. However, their high polymer crystallinity leads to the low ionic conductivity ( σ ), seriously impeding practical applications. Discovering SCEs with high σ through trial-and-error experiments and high-throughput calculations from massive material search space is an impractical task. The severe scarcity of experimental data on known SCEs even limits the utilization of supervised learning. Here, we adopted an unsupervised learning (UL) model to discover new SCEs with high σ based on <50 known experimental data. Our model revealed the key physical factors that affected the σ and clustered most of the known SCEs with high σ into four groups. From that we rapidly identified 49 promising SCEs with high σ , compared them with previous experimental results, and found two structures with the lowest Li + migration activation energy (only 0.212 eV). This work fully exploited the potential of UL to overcome the limitations of data scarcity in material discovery. Importantly, we shortened the screening period of SCEs by ∼23 years, providing a new idea for the rapid discovery and targeted design of materials for solid-state batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
wwf完成签到,获得积分20
7秒前
9秒前
12秒前
Skymi发布了新的文献求助10
13秒前
13秒前
Jasper应助GDL采纳,获得10
13秒前
热情的c99发布了新的文献求助10
18秒前
18秒前
英姑应助cxin采纳,获得10
19秒前
pzz发布了新的文献求助10
23秒前
26秒前
29秒前
汉堡包应助自信寻真采纳,获得10
30秒前
38秒前
39秒前
lxd完成签到 ,获得积分10
40秒前
pzz完成签到,获得积分10
41秒前
Grinde发布了新的文献求助10
43秒前
大胆的碧菡完成签到,获得积分10
43秒前
薄荷源星球完成签到 ,获得积分10
43秒前
能干秋珊完成签到,获得积分10
46秒前
47秒前
msn00完成签到 ,获得积分10
50秒前
54秒前
54秒前
57秒前
59秒前
边雨完成签到 ,获得积分10
59秒前
自信寻真发布了新的文献求助10
1分钟前
霸气乐菱发布了新的文献求助10
1分钟前
1分钟前
1分钟前
烟花应助我心向明月采纳,获得10
1分钟前
missing完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Pauline完成签到 ,获得积分10
1分钟前
1分钟前
GDL发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714225
求助须知:如何正确求助?哪些是违规求助? 5221821
关于积分的说明 15272955
捐赠科研通 4865714
什么是DOI,文献DOI怎么找? 2612313
邀请新用户注册赠送积分活动 1562449
关于科研通互助平台的介绍 1519671