清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Rapid discovery of inorganic-organic solid composite electrolytes by unsupervised learning

电解质 复合数 结晶度 计算机科学 稀缺 材料科学 吞吐量 化学 电极 复合材料 电信 算法 物理化学 经济 微观经济学 无线
作者
Kehao Tao,Zhilong Wang,Yanqiang Han,Jinjin Li
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:454: 140151-140151 被引量:24
标识
DOI:10.1016/j.cej.2022.140151
摘要

• A new physically interpretable descriptor is designed for solid composite electrolyte. • The proposed framework solves the problem of data scarcity of solid composite electrolyte, shortening the calculation cycle by 23 years. • A new model for predicting the conductivity of SCE agrees well with experiments. Inorganic-organic solid composite electrolytes (SCEs) have been widely concerned owing to their excellent film forming performance, good wettability and low flammability. However, their high polymer crystallinity leads to the low ionic conductivity ( σ ), seriously impeding practical applications. Discovering SCEs with high σ through trial-and-error experiments and high-throughput calculations from massive material search space is an impractical task. The severe scarcity of experimental data on known SCEs even limits the utilization of supervised learning. Here, we adopted an unsupervised learning (UL) model to discover new SCEs with high σ based on <50 known experimental data. Our model revealed the key physical factors that affected the σ and clustered most of the known SCEs with high σ into four groups. From that we rapidly identified 49 promising SCEs with high σ , compared them with previous experimental results, and found two structures with the lowest Li + migration activation energy (only 0.212 eV). This work fully exploited the potential of UL to overcome the limitations of data scarcity in material discovery. Importantly, we shortened the screening period of SCEs by ∼23 years, providing a new idea for the rapid discovery and targeted design of materials for solid-state batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灿烂而孤独的八戒完成签到 ,获得积分10
9秒前
20秒前
51秒前
方白秋完成签到,获得积分0
51秒前
量子星尘发布了新的文献求助10
56秒前
玛卡巴卡爱吃饭完成签到 ,获得积分10
57秒前
59秒前
wrl2023发布了新的文献求助10
1分钟前
sqc发布了新的文献求助10
1分钟前
wrl2023完成签到,获得积分10
1分钟前
房天川完成签到 ,获得积分10
1分钟前
临兵者完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
开放青旋应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
勤奋流沙完成签到 ,获得积分10
2分钟前
朴素海亦完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
小白菜完成签到,获得积分10
3分钟前
3分钟前
袁青寒完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
TEMPO发布了新的文献求助10
4分钟前
魔术师完成签到 ,获得积分10
4分钟前
4分钟前
瞿寒完成签到,获得积分10
4分钟前
快乐的笑阳完成签到,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
香蕉觅云应助huenguyenvan采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715085
求助须知:如何正确求助?哪些是违规求助? 5230157
关于积分的说明 15274003
捐赠科研通 4866162
什么是DOI,文献DOI怎么找? 2612714
邀请新用户注册赠送积分活动 1562934
关于科研通互助平台的介绍 1520210