Rapid discovery of inorganic-organic solid composite electrolytes by unsupervised learning

电解质 复合数 结晶度 计算机科学 稀缺 材料科学 吞吐量 化学 电极 复合材料 电信 算法 物理化学 经济 微观经济学 无线
作者
Kehao Tao,Zhilong Wang,Yanqiang Han,Jinjin Li
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:454: 140151-140151 被引量:24
标识
DOI:10.1016/j.cej.2022.140151
摘要

• A new physically interpretable descriptor is designed for solid composite electrolyte. • The proposed framework solves the problem of data scarcity of solid composite electrolyte, shortening the calculation cycle by 23 years. • A new model for predicting the conductivity of SCE agrees well with experiments. Inorganic-organic solid composite electrolytes (SCEs) have been widely concerned owing to their excellent film forming performance, good wettability and low flammability. However, their high polymer crystallinity leads to the low ionic conductivity ( σ ), seriously impeding practical applications. Discovering SCEs with high σ through trial-and-error experiments and high-throughput calculations from massive material search space is an impractical task. The severe scarcity of experimental data on known SCEs even limits the utilization of supervised learning. Here, we adopted an unsupervised learning (UL) model to discover new SCEs with high σ based on <50 known experimental data. Our model revealed the key physical factors that affected the σ and clustered most of the known SCEs with high σ into four groups. From that we rapidly identified 49 promising SCEs with high σ , compared them with previous experimental results, and found two structures with the lowest Li + migration activation energy (only 0.212 eV). This work fully exploited the potential of UL to overcome the limitations of data scarcity in material discovery. Importantly, we shortened the screening period of SCEs by ∼23 years, providing a new idea for the rapid discovery and targeted design of materials for solid-state batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
张坤发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
CodeCraft应助小机灵鬼采纳,获得10
1秒前
2秒前
英姑应助统领七届采纳,获得30
2秒前
学习发布了新的文献求助10
2秒前
3秒前
3秒前
白大侠发布了新的文献求助10
3秒前
实验顺利发布了新的文献求助10
4秒前
琪琪发布了新的文献求助10
4秒前
Lucas应助飘逸的雪珍采纳,获得10
4秒前
酷波er应助风中的丝袜采纳,获得10
4秒前
爆米花应助风中的丝袜采纳,获得10
4秒前
脑洞疼应助风中的丝袜采纳,获得10
4秒前
上官若男应助风中的丝袜采纳,获得10
4秒前
华仔应助风中的丝袜采纳,获得10
5秒前
英俊的铭应助风中的丝袜采纳,获得10
5秒前
6秒前
6秒前
电磁很快学会完成签到,获得积分20
7秒前
7秒前
7秒前
张欣宇应助甄雨琦采纳,获得10
7秒前
zz完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
Jared应助张坤采纳,获得10
8秒前
9秒前
Leo发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692994
求助须知:如何正确求助?哪些是违规求助? 5091092
关于积分的说明 15210459
捐赠科研通 4850168
什么是DOI,文献DOI怎么找? 2601565
邀请新用户注册赠送积分活动 1553403
关于科研通互助平台的介绍 1511404