Rapid discovery of inorganic-organic solid composite electrolytes by unsupervised learning

电解质 复合数 结晶度 计算机科学 稀缺 材料科学 吞吐量 化学 电极 复合材料 电信 算法 物理化学 经济 微观经济学 无线
作者
Kehao Tao,Zhilong Wang,Yanqiang Han,Jinjin Li
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:454: 140151-140151 被引量:24
标识
DOI:10.1016/j.cej.2022.140151
摘要

• A new physically interpretable descriptor is designed for solid composite electrolyte. • The proposed framework solves the problem of data scarcity of solid composite electrolyte, shortening the calculation cycle by 23 years. • A new model for predicting the conductivity of SCE agrees well with experiments. Inorganic-organic solid composite electrolytes (SCEs) have been widely concerned owing to their excellent film forming performance, good wettability and low flammability. However, their high polymer crystallinity leads to the low ionic conductivity ( σ ), seriously impeding practical applications. Discovering SCEs with high σ through trial-and-error experiments and high-throughput calculations from massive material search space is an impractical task. The severe scarcity of experimental data on known SCEs even limits the utilization of supervised learning. Here, we adopted an unsupervised learning (UL) model to discover new SCEs with high σ based on <50 known experimental data. Our model revealed the key physical factors that affected the σ and clustered most of the known SCEs with high σ into four groups. From that we rapidly identified 49 promising SCEs with high σ , compared them with previous experimental results, and found two structures with the lowest Li + migration activation energy (only 0.212 eV). This work fully exploited the potential of UL to overcome the limitations of data scarcity in material discovery. Importantly, we shortened the screening period of SCEs by ∼23 years, providing a new idea for the rapid discovery and targeted design of materials for solid-state batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
arT完成签到,获得积分10
刚刚
今后应助WWZ采纳,获得10
2秒前
2秒前
Teletubbies应助Frank采纳,获得30
2秒前
ZHDNCG完成签到,获得积分10
2秒前
2秒前
Vyasa完成签到,获得积分10
2秒前
小马甲应助大气靳采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
小蘑菇应助黄伟凯采纳,获得10
4秒前
L~完成签到,获得积分10
5秒前
cc举报wenzi96求助涉嫌违规
5秒前
ChiariRay完成签到,获得积分10
6秒前
Forever完成签到 ,获得积分10
6秒前
6秒前
光亮亦竹完成签到 ,获得积分10
8秒前
8秒前
Shumaila发布了新的文献求助10
8秒前
9秒前
9秒前
魔幻灵煌发布了新的文献求助10
10秒前
Lucas应助淡定采纳,获得10
10秒前
yyds发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
chimchim完成签到,获得积分10
11秒前
keyan完成签到,获得积分10
12秒前
nostalgic完成签到,获得积分10
14秒前
小刺猬发布了新的文献求助30
14秒前
chimchim发布了新的文献求助10
14秒前
14秒前
berg发布了新的文献求助10
14秒前
ll完成签到,获得积分10
14秒前
liyangyang完成签到,获得积分10
15秒前
gawang发布了新的文献求助30
15秒前
xfwang完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425