已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Rapid discovery of inorganic-organic solid composite electrolytes by unsupervised learning

电解质 复合数 结晶度 计算机科学 稀缺 材料科学 吞吐量 化学 电极 复合材料 电信 物理化学 算法 无线 经济 微观经济学
作者
Kehao Tao,Zhilong Wang,Yanqiang Han,Jinjin Li
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:454: 140151-140151 被引量:11
标识
DOI:10.1016/j.cej.2022.140151
摘要

• A new physically interpretable descriptor is designed for solid composite electrolyte. • The proposed framework solves the problem of data scarcity of solid composite electrolyte, shortening the calculation cycle by 23 years. • A new model for predicting the conductivity of SCE agrees well with experiments. Inorganic-organic solid composite electrolytes (SCEs) have been widely concerned owing to their excellent film forming performance, good wettability and low flammability. However, their high polymer crystallinity leads to the low ionic conductivity ( σ ), seriously impeding practical applications. Discovering SCEs with high σ through trial-and-error experiments and high-throughput calculations from massive material search space is an impractical task. The severe scarcity of experimental data on known SCEs even limits the utilization of supervised learning. Here, we adopted an unsupervised learning (UL) model to discover new SCEs with high σ based on <50 known experimental data. Our model revealed the key physical factors that affected the σ and clustered most of the known SCEs with high σ into four groups. From that we rapidly identified 49 promising SCEs with high σ , compared them with previous experimental results, and found two structures with the lowest Li + migration activation energy (only 0.212 eV). This work fully exploited the potential of UL to overcome the limitations of data scarcity in material discovery. Importantly, we shortened the screening period of SCEs by ∼23 years, providing a new idea for the rapid discovery and targeted design of materials for solid-state batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贺小刚发布了新的文献求助10
刚刚
刚刚
1秒前
胖橘发布了新的文献求助10
2秒前
3秒前
大模型应助凌晨洋采纳,获得10
4秒前
4秒前
6秒前
所所应助赵文龙采纳,获得10
8秒前
8秒前
9秒前
cctv18应助x菜鸡博士采纳,获得30
10秒前
11秒前
12秒前
王蕊发布了新的文献求助10
13秒前
13秒前
14秒前
TARGET完成签到 ,获得积分10
15秒前
dui发布了新的文献求助10
17秒前
17秒前
小红完成签到,获得积分10
17秒前
17秒前
lyc45491314发布了新的文献求助10
17秒前
眼睛大谷蕊完成签到 ,获得积分10
20秒前
阿哈发布了新的文献求助10
21秒前
赵利芹发布了新的文献求助30
21秒前
22秒前
22秒前
上官若男应助工藤新一采纳,获得50
23秒前
lokiki鸭完成签到,获得积分10
23秒前
彭于晏应助dui采纳,获得10
24秒前
Emmmm完成签到,获得积分20
24秒前
王自信发布了新的文献求助10
26秒前
传奇3应助阳光的羊采纳,获得10
27秒前
小马甲应助王蕊采纳,获得10
27秒前
于楷鑫发布了新的文献求助20
28秒前
魔芋小心发布了新的文献求助10
28秒前
JamesPei应助阿哈采纳,获得10
29秒前
30秒前
31秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422633
求助须知:如何正确求助?哪些是违规求助? 3022993
关于积分的说明 8903137
捐赠科研通 2710447
什么是DOI,文献DOI怎么找? 1486443
科研通“疑难数据库(出版商)”最低求助积分说明 687061
邀请新用户注册赠送积分活动 682286