Rapid discovery of inorganic-organic solid composite electrolytes by unsupervised learning

电解质 复合数 结晶度 计算机科学 稀缺 材料科学 吞吐量 化学 电极 复合材料 电信 算法 物理化学 经济 微观经济学 无线
作者
Kehao Tao,Zhilong Wang,Yanqiang Han,Jinjin Li
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:454: 140151-140151 被引量:11
标识
DOI:10.1016/j.cej.2022.140151
摘要

• A new physically interpretable descriptor is designed for solid composite electrolyte. • The proposed framework solves the problem of data scarcity of solid composite electrolyte, shortening the calculation cycle by 23 years. • A new model for predicting the conductivity of SCE agrees well with experiments. Inorganic-organic solid composite electrolytes (SCEs) have been widely concerned owing to their excellent film forming performance, good wettability and low flammability. However, their high polymer crystallinity leads to the low ionic conductivity ( σ ), seriously impeding practical applications. Discovering SCEs with high σ through trial-and-error experiments and high-throughput calculations from massive material search space is an impractical task. The severe scarcity of experimental data on known SCEs even limits the utilization of supervised learning. Here, we adopted an unsupervised learning (UL) model to discover new SCEs with high σ based on <50 known experimental data. Our model revealed the key physical factors that affected the σ and clustered most of the known SCEs with high σ into four groups. From that we rapidly identified 49 promising SCEs with high σ , compared them with previous experimental results, and found two structures with the lowest Li + migration activation energy (only 0.212 eV). This work fully exploited the potential of UL to overcome the limitations of data scarcity in material discovery. Importantly, we shortened the screening period of SCEs by ∼23 years, providing a new idea for the rapid discovery and targeted design of materials for solid-state batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Owen应助光亮的思天采纳,获得10
刚刚
皇甫藏鸟发布了新的文献求助10
刚刚
刚刚
mjlink完成签到,获得积分10
1秒前
CodeCraft应助淘气科研采纳,获得10
1秒前
2秒前
2秒前
JamesPei应助激昂的白凡采纳,获得10
3秒前
Scidog完成签到,获得积分0
3秒前
小李完成签到,获得积分10
3秒前
yangliu071998完成签到,获得积分10
3秒前
3秒前
隐形曼青应助Ampace小老弟采纳,获得10
4秒前
Lucas应助文艺的白开水采纳,获得10
4秒前
4秒前
4秒前
typpppp完成签到,获得积分10
4秒前
saluo完成签到,获得积分10
5秒前
LmyHusband完成签到,获得积分10
5秒前
Lucas应助隐形的笑白采纳,获得10
5秒前
宁静致远完成签到,获得积分10
5秒前
Thunnus001完成签到,获得积分10
5秒前
5秒前
7秒前
7秒前
钱塘郎中发布了新的文献求助10
7秒前
Six_seven完成签到,获得积分10
7秒前
雨慧发布了新的文献求助10
8秒前
清辉夜凝完成签到,获得积分10
8秒前
8秒前
请您多关心完成签到 ,获得积分10
8秒前
xiezhenghong发布了新的文献求助10
9秒前
Haiyang应助搞怪莫茗采纳,获得10
10秒前
LiWeipeng完成签到,获得积分10
10秒前
Casper完成签到,获得积分10
10秒前
zhutier完成签到,获得积分10
10秒前
花样完成签到,获得积分10
11秒前
天天快乐应助kimmie采纳,获得10
11秒前
顾矜应助一科研土豆采纳,获得10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016344
求助须知:如何正确求助?哪些是违规求助? 3556478
关于积分的说明 11321199
捐赠科研通 3289279
什么是DOI,文献DOI怎么找? 1812421
邀请新用户注册赠送积分活动 887952
科研通“疑难数据库(出版商)”最低求助积分说明 812060