DeceFL: A Principled Decentralized Federated Learning Framework

计算机科学 联合学习 趋同(经济学) 随机梯度下降算法 功能(生物学) 脆弱性(计算) 分布式计算 管道(软件) 人工智能 机器学习 计算机安全 进化生物学 人工神经网络 经济 生物 程序设计语言 经济增长
作者
Y. Yuan,Jun Li,Dou Jin,Zuogong Yue,Ruijuan Chen,Maolin Wang,Chen Sun,Lei Xu,Hao Feng,Xin He,Xinlei Yi,Tao Yang,Haitao Zhang,Shaochun Sui,Dawei Han
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2107.07171
摘要

Traditional machine learning relies on a centralized data pipeline, i.e., data are provided to a central server for model training. In many applications, however, data are inherently fragmented. Such a decentralized nature of these databases presents the biggest challenge for collaboration: sending all decentralized datasets to a central server raises serious privacy concerns. Although there has been a joint effort in tackling such a critical issue by proposing privacy-preserving machine learning frameworks, such as federated learning, most state-of-the-art frameworks are built still in a centralized way, in which a central client is needed for collecting and distributing model information (instead of data itself) from every other client, leading to high communication pressure and high vulnerability when there exists a failure at or attack on the central client. Here we propose a principled decentralized federated learning algorithm (DeceFL), which does not require a central client and relies only on local information transmission between clients and their neighbors, representing a fully decentralized learning framework. It has been further proven that every client reaches the global minimum with zero performance gap and achieves the same convergence rate $O(1/T)$ (where $T$ is the number of iterations in gradient descent) as centralized federated learning when the loss function is smooth and strongly convex. Finally, the proposed algorithm has been applied to a number of applications to illustrate its effectiveness for both convex and nonconvex loss functions, demonstrating its applicability to a wide range of real-world medical and industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Malmever完成签到,获得积分10
刚刚
小盼虫发布了新的文献求助10
刚刚
1秒前
Gengar发布了新的文献求助10
2秒前
2秒前
yuan发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
佳佳应助文静元风采纳,获得10
5秒前
6秒前
6秒前
WerWu完成签到,获得积分10
7秒前
哭泣海雪完成签到 ,获得积分10
8秒前
abx发布了新的文献求助10
8秒前
9秒前
酷波er应助lhy1150469792采纳,获得10
9秒前
仙棠发布了新的文献求助10
9秒前
Qwaxds发布了新的文献求助10
9秒前
10秒前
思源应助sameen采纳,获得10
10秒前
666星爷完成签到,获得积分10
10秒前
11秒前
12秒前
易达发布了新的文献求助10
12秒前
乐乐应助美味的薯片采纳,获得10
14秒前
zz发布了新的文献求助10
14秒前
落后寒凡完成签到,获得积分10
16秒前
阔达的访风完成签到 ,获得积分10
16秒前
17秒前
xxxx发布了新的文献求助10
18秒前
大模型应助XL神放采纳,获得30
18秒前
QLZ发布了新的文献求助20
19秒前
一新完成签到,获得积分10
19秒前
正直的博完成签到,获得积分10
20秒前
仙棠完成签到,获得积分10
20秒前
21秒前
赘婿应助小巧含之采纳,获得10
22秒前
22秒前
海的呼唤发布了新的文献求助10
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998235
求助须知:如何正确求助?哪些是违规求助? 3537729
关于积分的说明 11272361
捐赠科研通 3276854
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883757
科研通“疑难数据库(出版商)”最低求助积分说明 810014