Default Mode Network Modulation by Psychedelics: A Systematic Review

默认模式网络 调制(音乐) 心理学 神经科学 计算机科学 物理 功能连接 声学
作者
James J Gattuso,Daniel Perkins,Simon Ruffell,Andrew J. Lawrence,Daniël Hoyer,Laura H. Jacobson,Christopher Timmermann,David Castle,Susan L. Rossell,Luke A. Downey,Broc A. Pagni,Nicole Leite Galvão‐Coelho,David Nutt,Jerome Sarris
出处
期刊:The International Journal of Neuropsychopharmacology [Oxford University Press]
卷期号:26 (3): 155-188 被引量:91
标识
DOI:10.1093/ijnp/pyac074
摘要

Abstract Psychedelics are a unique class of drug that commonly produce vivid hallucinations as well as profound psychological and mystical experiences. A grouping of interconnected brain regions characterized by increased temporal coherence at rest have been termed the Default Mode Network (DMN). The DMN has been the focus of numerous studies assessing its role in self-referencing, mind wandering, and autobiographical memories. Altered connectivity in the DMN has been associated with a range of neuropsychiatric conditions such as depression, anxiety, post-traumatic stress disorder, attention deficit hyperactive disorder, schizophrenia, and obsessive-compulsive disorder. To date, several studies have investigated how psychedelics modulate this network, but no comprehensive review, to our knowledge, has critically evaluated how major classical psychedelic agents—lysergic acid diethylamide, psilocybin, and ayahuasca—modulate the DMN. Here we present a systematic review of the knowledge base. Across psychedelics there is consistent acute disruption in resting state connectivity within the DMN and increased functional connectivity between canonical resting-state networks. Various models have been proposed to explain the cognitive mechanisms of psychedelics, and in one model DMN modulation is a central axiom. Although the DMN is consistently implicated in psychedelic studies, it is unclear how central the DMN is to the therapeutic potential of classical psychedelic agents. This article aims to provide the field with a comprehensive overview that can propel future research in such a way as to elucidate the neurocognitive mechanisms of psychedelics.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SciGPT应助科研通管家采纳,获得20
1秒前
直率向薇发布了新的文献求助10
1秒前
甜甜玫瑰应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
FashionBoy应助现实的画板采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
xzy998应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
1秒前
kulei发布了新的文献求助10
1秒前
甜甜玫瑰应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
2秒前
Dan应助科研通管家采纳,获得10
2秒前
xzy998应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
甜甜玫瑰应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
3秒前
4秒前
darklyfrank完成签到 ,获得积分20
4秒前
小马甲应助友好的小鸽子采纳,获得10
4秒前
4秒前
lightman发布了新的文献求助10
4秒前
小蘑菇应助调皮的南蕾采纳,获得10
5秒前
尹小青完成签到,获得积分20
6秒前
6秒前
义气成风应助相濡以沫采纳,获得10
6秒前
李爱国应助bq采纳,获得10
7秒前
Wayi发布了新的文献求助10
7秒前
科研通AI2S应助夏青荷采纳,获得10
7秒前
7秒前
8秒前
8秒前
TCA完成签到,获得积分10
9秒前
施含莲发布了新的文献求助10
9秒前
10秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3415283
求助须知:如何正确求助?哪些是违规求助? 3017167
关于积分的说明 8879668
捐赠科研通 2704722
什么是DOI,文献DOI怎么找? 1482989
科研通“疑难数据库(出版商)”最低求助积分说明 685630
邀请新用户注册赠送积分活动 680579