材料科学
异质结
光电子学
掺杂剂
兴奋剂
能量转换效率
带隙
平面的
纳米技术
计算机科学
计算机图形学(图像)
作者
Shi‐Wu Chen,Mingyu Li,Yongcheng Zhu,Xueqin Cai,Feng Xiao,Tianjun Ma,Yang Ji,Guohuan Shen,An Ke,Yue Lu,Wenxi Liang,Hsien‐Yi Hsu,Chao Chen,Jiang Tang,Haisheng Song
标识
DOI:10.1002/aenm.202202897
摘要
Abstract Antimony sulfide is a promising wide bandgap light‐harvesting material owing to its high absorption coefficient, nontoxicity, superior stability, and low cost. However, the reported Sb 2 S 3 absorber suffers from complicated defect characteristics due to its quasi‐1D structure. Herein, a codoping technique from chlorine and selenium is developed in hydrothermal method to regulate the film defect properties and promote the device efficiency. The theoretical calculation and experimental results demonstrate that the Cl&Se codoping plays a synergistic role in absorber film quality improvement. Se doping could efficiently fill the intrinsic deep defect level V S and Cl is a benign n‐type dopant and favor [hk1] oriented deposition. Systematic device physical characterizations verify the codoped device superior heterojunction quality and much lower interface and bulk defect density comparing with control one. The optimal codoping device delivers a certified power conversion efficiency of 7.15% (5.9% for control one), the highest certified value in planar Sb 2 S 3 solar cells. This study develops an effective doping strategy with multi‐element synergistic incorporation which sheds new light on high‐efficiency Sb 2 S 3 solar cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI