Effect of a flipped classroom course to foster medical students’ AI literacy with a focus on medical imaging: a single group pre-and post-test study

医学教育 课程 考试(生物学) 医学诊断 焦点小组 反转课堂 心理学 教育测量 课程评价 读写能力 计算机科学 医学 数学教育 高等教育 教育学 病理 业务 法学 营销 古生物学 生物 政治学
作者
Matthias Carl Laupichler,Dariusch R. Hadizadeh,Maximilian W. M. Wintergerst,Leon von der Emde,Daniel Paech,Elizabeth Dick,Tobias Raupach
出处
期刊:BMC Medical Education [Springer Nature]
卷期号:22 (1) 被引量:22
标识
DOI:10.1186/s12909-022-03866-x
摘要

The use of artificial intelligence applications in medicine is becoming increasingly common. At the same time, however, there are few initiatives to teach this important and timely topic to medical students. One reason for this is the predetermined medical curriculum, which leaves very little room for new topics that were not included before. We present a flipped classroom course designed to give undergraduate medical students an elaborated first impression of AI and to increase their "AI readiness".The course was tested and evaluated at Bonn Medical School in Germany with medical students in semester three or higher and consisted of a mixture of online self-study units and online classroom lessons. While the online content provided the theoretical underpinnings and demonstrated different perspectives on AI in medical imaging, the classroom sessions offered deeper insight into how "human" diagnostic decision-making differs from AI diagnoses. This was achieved through interactive exercises in which students first diagnosed medical image data themselves and then compared their results with the AI diagnoses. We adapted the "Medical Artificial Intelligence Scale for Medical Students" to evaluate differences in "AI readiness" before and after taking part in the course. These differences were measured by calculating the so called "comparative self-assessment gain" (CSA gain) which enables a valid and reliable representation of changes in behaviour, attitudes, or knowledge.We found a statistically significant increase in perceived AI readiness. While values of CSA gain were different across items and factors, the overall CSA gain regarding AI readiness was satisfactory.Attending a course developed to increase knowledge about AI in medical imaging can increase self-perceived AI readiness in medical students.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无私绿兰完成签到 ,获得积分10
1秒前
大方梦安发布了新的文献求助10
1秒前
Lucas应助奶油布丁采纳,获得10
2秒前
wylbdhj发布了新的文献求助10
3秒前
梅子完成签到 ,获得积分10
4秒前
ID8发布了新的文献求助10
5秒前
6秒前
DrJiang完成签到,获得积分10
7秒前
Tony完成签到,获得积分10
9秒前
传奇3应助rebecka采纳,获得10
10秒前
搜集达人应助眼睛大天思采纳,获得10
10秒前
jingjun_Li发布了新的文献求助10
11秒前
12秒前
领导范儿应助swordlee采纳,获得10
12秒前
秋荆完成签到,获得积分10
12秒前
15秒前
15秒前
TresAU发布了新的文献求助10
16秒前
科研通AI5应助焦糖玛奇朵采纳,获得10
16秒前
16秒前
17秒前
苏毓发布了新的文献求助10
18秒前
深情安青应助小尾巴采纳,获得10
18秒前
18秒前
彭于晏应助吴1采纳,获得10
18秒前
18秒前
星辰大海应助五十四采纳,获得10
19秒前
hhw完成签到,获得积分10
20秒前
wylbdhj完成签到,获得积分10
20秒前
jackdu发布了新的文献求助10
21秒前
21秒前
卡哇伊骨头完成签到,获得积分10
21秒前
Rui发布了新的文献求助200
22秒前
二七发布了新的文献求助10
22秒前
23秒前
任性大米完成签到 ,获得积分10
23秒前
爆米花应助hua采纳,获得10
24秒前
ppg123发布了新的文献求助10
24秒前
WHHW发布了新的文献求助10
25秒前
zho发布了新的文献求助10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555360
求助须知:如何正确求助?哪些是违规求助? 3130973
关于积分的说明 9389383
捐赠科研通 2830472
什么是DOI,文献DOI怎么找? 1556047
邀请新用户注册赠送积分活动 726376
科研通“疑难数据库(出版商)”最低求助积分说明 715738