Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global Weather Forecast

数值天气预报 全球预报系统 热带气旋预报模式 模型输出统计 北美中尺度模式 气象学 位势高度 天气预报 预测技巧 预测验证 环境科学 数据同化 天气预报 定量降水预报 计算机科学 人工神经网络 地面天气观测 机器学习 地理 降水
作者
Kaifeng Bi,Lingxi Xie,Hengheng Zhang,Xin Chen,Xiaotao Gu,Qi Tian
出处
期刊:Cornell University - arXiv 被引量:73
标识
DOI:10.48550/arxiv.2211.02556
摘要

In this paper, we present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast. For this purpose, we establish a data-driven environment by downloading $43$ years of hourly global weather data from the 5th generation of ECMWF reanalysis (ERA5) data and train a few deep neural networks with about $256$ million parameters in total. The spatial resolution of forecast is $0.25^\circ\times0.25^\circ$, comparable to the ECMWF Integrated Forecast Systems (IFS). More importantly, for the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy (latitude-weighted RMSE and ACC) of all factors (e.g., geopotential, specific humidity, wind speed, temperature, etc.) and in all time ranges (from one hour to one week). There are two key strategies to improve the prediction accuracy: (i) designing a 3D Earth Specific Transformer (3DEST) architecture that formulates the height (pressure level) information into cubic data, and (ii) applying a hierarchical temporal aggregation algorithm to alleviate cumulative forecast errors. In deterministic forecast, Pangu-Weather shows great advantages for short to medium-range forecast (i.e., forecast time ranges from one hour to one week). Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast (e.g., tropical cyclone tracking) and large-member ensemble forecast in real-time. Pangu-Weather not only ends the debate on whether AI-based methods can surpass conventional NWP methods, but also reveals novel directions for improving deep learning weather forecast systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dalin完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
Dr.L完成签到,获得积分10
4秒前
拉拉完成签到,获得积分20
4秒前
4秒前
4秒前
5秒前
CarolineSH完成签到 ,获得积分10
5秒前
SciGPT应助王翔采纳,获得10
5秒前
hd完成签到,获得积分10
5秒前
wansida完成签到,获得积分10
7秒前
浮游应助kukuku采纳,获得10
8秒前
xumengsuo发布了新的文献求助10
8秒前
乐乐发布了新的文献求助10
8秒前
天天快乐应助3100采纳,获得10
9秒前
czq发布了新的文献求助10
9秒前
9秒前
10秒前
陈玉发布了新的文献求助10
11秒前
11秒前
程雯慧发布了新的文献求助10
12秒前
xh发布了新的文献求助10
12秒前
13秒前
15秒前
云望发布了新的文献求助10
15秒前
15秒前
WN发布了新的文献求助10
18秒前
18秒前
llll完成签到 ,获得积分0
19秒前
20秒前
20秒前
拉拉关注了科研通微信公众号
22秒前
王翔发布了新的文献求助10
22秒前
充电宝应助可靠冥幽采纳,获得10
23秒前
李健应助云望采纳,获得10
23秒前
情怀应助xumengsuo采纳,获得10
23秒前
Jasper应助Dr.L采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5061232
求助须知:如何正确求助?哪些是违规求助? 4285332
关于积分的说明 13354142
捐赠科研通 4103141
什么是DOI,文献DOI怎么找? 2246531
邀请新用户注册赠送积分活动 1252193
关于科研通互助平台的介绍 1183040