Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global Weather Forecast

数值天气预报 全球预报系统 热带气旋预报模式 模型输出统计 北美中尺度模式 气象学 位势高度 天气预报 预测技巧 预测验证 环境科学 数据同化 天气预报 定量降水预报 计算机科学 人工神经网络 地面天气观测 机器学习 地理 降水
作者
Kaifeng Bi,Lingxi Xie,Hengheng Zhang,Xin Chen,Xiaotao Gu,Qi Tian
出处
期刊:Cornell University - arXiv 被引量:73
标识
DOI:10.48550/arxiv.2211.02556
摘要

In this paper, we present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast. For this purpose, we establish a data-driven environment by downloading $43$ years of hourly global weather data from the 5th generation of ECMWF reanalysis (ERA5) data and train a few deep neural networks with about $256$ million parameters in total. The spatial resolution of forecast is $0.25^\circ\times0.25^\circ$, comparable to the ECMWF Integrated Forecast Systems (IFS). More importantly, for the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy (latitude-weighted RMSE and ACC) of all factors (e.g., geopotential, specific humidity, wind speed, temperature, etc.) and in all time ranges (from one hour to one week). There are two key strategies to improve the prediction accuracy: (i) designing a 3D Earth Specific Transformer (3DEST) architecture that formulates the height (pressure level) information into cubic data, and (ii) applying a hierarchical temporal aggregation algorithm to alleviate cumulative forecast errors. In deterministic forecast, Pangu-Weather shows great advantages for short to medium-range forecast (i.e., forecast time ranges from one hour to one week). Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast (e.g., tropical cyclone tracking) and large-member ensemble forecast in real-time. Pangu-Weather not only ends the debate on whether AI-based methods can surpass conventional NWP methods, but also reveals novel directions for improving deep learning weather forecast systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懦弱的易绿完成签到,获得积分10
刚刚
1秒前
2秒前
一碗晚月完成签到,获得积分10
2秒前
2秒前
2秒前
majf发布了新的文献求助10
2秒前
Orange应助饱满的书萱采纳,获得10
3秒前
3秒前
夏天特慢完成签到,获得积分10
3秒前
3秒前
5秒前
雨陌应助EASA采纳,获得10
6秒前
nululala发布了新的文献求助10
6秒前
向磊发布了新的文献求助10
7秒前
Leo_Sun完成签到,获得积分10
7秒前
7秒前
XD824发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
lyy发布了新的文献求助10
8秒前
Hey发布了新的文献求助10
8秒前
自然访彤完成签到,获得积分10
8秒前
Ther完成签到,获得积分10
8秒前
8秒前
H·Y完成签到,获得积分10
8秒前
大佛老爷发布了新的文献求助10
9秒前
维洛尼亚发布了新的文献求助10
9秒前
10秒前
小平发布了新的文献求助10
11秒前
高大的问丝完成签到,获得积分10
11秒前
大个应助Usran采纳,获得30
11秒前
12秒前
12秒前
科目三应助杨德帅采纳,获得10
12秒前
12秒前
12秒前
ren发布了新的文献求助10
13秒前
danhuang发布了新的文献求助10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791