Potential of physics-informed neural networks for solving fluid flow problems with parametric boundary conditions

物理 人工神经网络 流体力学 参数统计 流量(数学) 边值问题 边界(拓扑) 统计物理学 应用数学 机械 经典力学 数学分析 人工智能 量子力学 计算机科学 统计 数学
作者
Finn Lorenzen,Amin Zargaran,Uwe Janoske
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (3) 被引量:3
标识
DOI:10.1063/5.0193952
摘要

Fluid flows are present in various fields of science and engineering, so their mathematical description and modeling is of high practical importance. However, utilizing classical numerical methods to model fluid flows is often time consuming and a new simulation is needed for each modification of the domain, boundary conditions, or fluid properties. As a result, these methods have limited utility when it comes to conducting extensive parameter studies or optimizing fluid systems. By utilizing recently proposed physics-informed neural networks (PINNs), these limitations can be addressed. PINNs approximate the solution of a single or system of partial differential equations (PDEs) by artificial neural networks (ANNs). The residuals of the PDEs are used as the loss function of the ANN, while the boundary condition is imposed in a supervised manner. Hence, PDEs are solved by performing a nonconvex optimization during the training of the ANN instead of solving a system of equations. Although this relatively new method cannot yet compete with classical numerical methods in terms of accuracy for complex problems, this approach shows promising potential as it is mesh-free and suitable for parametric solution of PDE problems. This is achieved without relying on simulation data or measurement information. This study focuses on the impact of parametric boundary conditions, specifically a variable inlet velocity profile, on the flow calculations. For the first time, a physics-based penalty term to avoid the suboptimal solution along with an efficient way of imposing parametric boundary conditions within PINNs is presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WNL发布了新的文献求助10
1秒前
Ngu完成签到,获得积分10
1秒前
科研通AI5应助冷艳后妈采纳,获得10
1秒前
陶1122发布了新的文献求助10
1秒前
万能图书馆应助乐观期待采纳,获得30
1秒前
krystal完成签到,获得积分10
1秒前
学术大小拿完成签到,获得积分10
2秒前
迪迦完成签到,获得积分10
2秒前
3秒前
乖乖发布了新的文献求助10
3秒前
3秒前
song24517发布了新的文献求助20
3秒前
顺利琦完成签到,获得积分10
4秒前
李子发布了新的文献求助10
4秒前
pbf完成签到,获得积分10
4秒前
4秒前
lyn发布了新的文献求助30
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
Twikky完成签到,获得积分10
4秒前
柚子皮应助科研通管家采纳,获得10
4秒前
5秒前
5秒前
5秒前
852应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
Akim应助夏末采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
迟大猫应助想学习采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
6秒前
期刊应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
最卷的卷心菜完成签到,获得积分10
6秒前
科研通AI5应助科研通管家采纳,获得50
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678