Machine Learning to Improve Accuracy of Transcutaneous Bilirubinometry

胆红素 胎龄 医学 直接胆红素 出生体重 梯度升压 算法 数学 随机森林 内科学 胃肠病学 动物科学 机器学习 化学 生物化学 怀孕 生物 计算机科学 碱性磷酸酶 遗传学
作者
Daisaku Morimoto,Yosuke Washio,Kana Fukuda,Takeshi Sato,Tomoka Okamura,Hirokazu Watanabe,Junko Yoshimoto,Miki Tanioka,Hirokazu Tsukahara
出处
期刊:Neonatology [Karger Publishers]
卷期号:: 1-8
标识
DOI:10.1159/000535970
摘要

<b><i>Introduction:</i></b> This study aimed to develop models for predicting total serum bilirubin by correcting errors of transcutaneous bilirubin using machine learning based on neonatal biomarkers that could affect spectrophotometric measurements of tissue bilirubin. <b><i>Methods:</i></b> This retrospective study included infants born at our hospital (≥36 weeks old, ≥2,000 g) between January 2020 and December 2022. Infants without a phototherapy history were included. Robust linear regression, gradient boosting tree, and neural networks were used for machine learning models. A neural network, inspired by the structure of the human brain, was designed comprising three layers: input, intermediate, and output. <b><i>Results:</i></b> Totally, 683 infants were included. The mean (minimum-maximum) gestational age, birth weight, participant age, total serum bilirubin, and transcutaneous bilirubin were 39.0 (36.0–42.0) weeks, 3,004 (2,004–4,484) g, 2.8 (1–6) days of age, 8.50 (2.67–18.12) mg/dL, and 7.8 (1.1–18.1) mg/dL, respectively. The neural network model had a root mean square error of 1.03 mg/dL and a mean absolute error of 0.80 mg/dL in cross-validation data. These values were 0.37 mg/dL and 0.28 mg/dL, smaller compared to transcutaneous bilirubin, respectively. The 95% limit of agreement between the neural network estimation and total serum bilirubin was −2.01 to 2.01 mg/dL. Unnecessary blood draws could be reduced by up to 78%. <b><i>Conclusion:</i></b> Using machine learning with transcutaneous bilirubin, total serum bilirubin estimation error was reduced by 25%. This integration could increase accuracy, lessen infant discomfort, and simplify procedures, offering a smart alternative to blood draws by accurately estimating phototherapy thresholds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mytx发布了新的文献求助10
1秒前
桃花嫣然完成签到,获得积分10
1秒前
suki应助心灵美的土豆采纳,获得10
1秒前
1秒前
斯文败类应助小香香采纳,获得20
2秒前
3秒前
852应助hanlanx采纳,获得10
3秒前
马旭辉发布了新的文献求助10
3秒前
天天快乐应助Silole采纳,获得10
4秒前
4秒前
5秒前
祸74发布了新的文献求助10
5秒前
6秒前
白文博完成签到 ,获得积分10
7秒前
ppp完成签到,获得积分10
7秒前
嚯嚯完成签到,获得积分20
7秒前
LHY发布了新的文献求助10
7秒前
薛继敏发布了新的文献求助10
8秒前
12138完成签到,获得积分10
8秒前
CLL完成签到 ,获得积分10
8秒前
ideal完成签到,获得积分10
9秒前
爻邡发布了新的文献求助10
9秒前
小白应助收拾收拾采纳,获得30
9秒前
顺利念双发布了新的文献求助10
10秒前
科研通AI2S应助汤飞柏采纳,获得10
10秒前
11秒前
mytx完成签到,获得积分10
11秒前
希望天下0贩的0应助lc采纳,获得10
11秒前
12秒前
ideal发布了新的文献求助10
12秒前
hhd完成签到 ,获得积分0
12秒前
李健应助duila采纳,获得30
12秒前
shuang完成签到,获得积分10
12秒前
13秒前
实验好难应助lololoan采纳,获得10
13秒前
14秒前
鱼女士完成签到,获得积分10
14秒前
15秒前
万万没想到完成签到 ,获得积分10
15秒前
七濑发布了新的文献求助10
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4090
Production Logging: Theoretical and Interpretive Elements 3000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3751456
求助须知:如何正确求助?哪些是违规求助? 3295066
关于积分的说明 10088698
捐赠科研通 3010211
什么是DOI,文献DOI怎么找? 1653078
邀请新用户注册赠送积分活动 787956
科研通“疑难数据库(出版商)”最低求助积分说明 752461