Exact Characterization of the Jointly Optimal Restocking and Auditing Policy in Inventory Systems with Record Inaccuracy

表征(材料科学) 审计 数学 数学优化 运筹学 数理经济学 业务 会计 材料科学 纳米技术
作者
Naveed Chehrazi
出处
期刊:Mathematics of Operations Research [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/moor.2022.0145
摘要

We present a continuous-time stochastic model of an inventory system with record inaccuracy. In this formulation, demand is modeled by a point process and is observable only when it leads to sales. In addition to demand that can reduce the stock, an unobservable stochastic loss process can also reduce the stock. The retailer’s goal is to identify the restocking and auditing policy that minimizes the expected discounted cost of carrying a product over an infinite horizon. We analytically characterize the optimal restocking and jointly optimal auditing policy. We prove that the optimal restocking policy is a threshold policy. Our proof of this result is based on a coupling argument that is valid for any demand and loss model. Unlike the optimal restocking policy, the jointly optimal auditing policy is not of threshold type. We show that a complete proof of this statement cannot be obtained by solely resorting to the first-order stochastic dominance property of the Bayesian shelf stock distribution induced by the demand and loss process. Instead, our characterization of the jointly optimal auditing policy is based on proving that the dynamics of the shelf stock distribution constitute a (strictly) sign-regular kernel. To our knowledge, this is the first paper that characterizes the optimal policy of a complex control problem by establishing sign regularity of its underlying Markovian dynamics. Our theoretical results lead to a fast algorithm for computing the exact jointly optimal auditing/restocking policy over the problem’s entire state space. This enables comparative statics analysis, which allows us to determine how inventory record inaccuracy affects the economic significance of various cost drivers. This, in turn, allows us to determine when or, better, under what conditions auditing can be an effective tool for reducing the total cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚心的仙人掌完成签到,获得积分10
1秒前
symbol1完成签到,获得积分10
2秒前
xiaofei666应助壮观的小天鹅采纳,获得30
3秒前
李晨源发布了新的文献求助10
5秒前
cynical发布了新的文献求助10
6秒前
欣喜的真完成签到,获得积分10
8秒前
jluhft关注了科研通微信公众号
8秒前
9秒前
dancingidam发布了新的文献求助10
9秒前
9秒前
仙贝完成签到,获得积分10
10秒前
11秒前
科小白完成签到 ,获得积分10
11秒前
12秒前
12秒前
勿欲论比发布了新的文献求助10
12秒前
Shaylee发布了新的文献求助10
14秒前
15秒前
DAX完成签到,获得积分10
15秒前
16秒前
牛顿的苹果完成签到,获得积分10
16秒前
修仙应助Zeming_Pan采纳,获得10
17秒前
阳光以筠发布了新的文献求助10
17秒前
天上白玉京完成签到,获得积分10
18秒前
科目三应助高高小萱采纳,获得10
18秒前
19秒前
luoshi94发布了新的文献求助10
22秒前
在水一方应助天上白玉京采纳,获得30
22秒前
22秒前
22秒前
jluhft发布了新的文献求助20
23秒前
yyl发布了新的文献求助30
23秒前
气敏侠完成签到,获得积分20
23秒前
24秒前
狮子座发布了新的文献求助10
25秒前
cappuccino发布了新的文献求助10
26秒前
气敏侠发布了新的文献求助10
26秒前
阳光以筠完成签到,获得积分10
29秒前
31秒前
ggkx完成签到,获得积分10
32秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153347
求助须知:如何正确求助?哪些是违规求助? 2804555
关于积分的说明 7860074
捐赠科研通 2462478
什么是DOI,文献DOI怎么找? 1310769
科研通“疑难数据库(出版商)”最低求助积分说明 629396
版权声明 601794