Ionic-Liquid-Assisted Capture of Volatile Low-Carbon Alcohols in Printing Plant Exhaust Gas
离子液体
废气
碳纤维
化学
有机化学
环境化学
材料科学
催化作用
复合数
复合材料
作者
Zhijie Shang,Pan Xu,Guoxuan Li,Wanxiang Zhang,Zhengrun Chen,Qinghua Liu
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society] 日期:2024-03-27
标识
DOI:10.1021/acssuschemeng.4c00552
摘要
In green and sustainable chemical development, the efficient capture of volatile organic compounds (VOCs) with novel green solvents is recognized as an excellent potential research direction. This study proposes a novel method to efficiently absorb alcohols (ethanol, n-propanol, and isopropyl alcohol) in VOCs emitted from printing factories by ionic liquids (ILs). The COSMO-RS model screened 256 ILs with Henry's law constant and selectivity coefficient as separation performance indexes. 1-(2-Hydroxyethyl)-3-methylimidazolium hexafluorophosphate ([HEMIM][PF6]) is the most potential absorbent. The absorption performance and interaction mechanism of [HEMIM][PF6] on ethanol, n-propanol, and isopropyl alcohol were investigated with a combination of calculation thermodynamics, molecular dynamics, and gas absorption experiments. The alcohol absorption experiments and regeneration experiments of ILs were performed at different IL flow rates, and the results demonstrated that ILs possessed excellent stability and regenerative properties. The excess enthalpy analysis demonstrated the thermodynamic feasibility of capturing alcohol molecules with ILs. Molecular surface electrostatic potential analysis was performed to obtain binding sites for intermolecular interactions. The spatial distribution function revealed the spatial distribution of ILs around alcohol molecules from the perspective of clustered macromolecules. This work provides theoretical insights into molecular thermodynamics and kinetics for developing novel ILs for VOC purification.