A novel feature-level fusion scheme with multimodal attention CNN for heart sound classification

计算机科学 卷积神经网络 特征(语言学) 人工智能 光学(聚焦) 模式识别(心理学) 特征提取 利用 领域(数学分析) Mel倒谱 机器学习 语音识别 哲学 数学分析 语言学 数学 物理 计算机安全 光学
作者
Kalpeshkumar Ranipa,Wei‐Ping Zhu,M.N.S. Swamy
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:248: 108122-108122
标识
DOI:10.1016/j.cmpb.2024.108122
摘要

Most of the existing machine learning-based heart sound classification methods achieve limited accuracy. Since they primarily depend on single domain feature information and tend to focus equally on each part of the signal rather than employing a selective attention mechanism. In addition, they fail to exploit convolutional neural network (CNN) - based features with an effective fusion strategy. In order to overcome these limitations, a novel multimodal attention convolutional neural network (MACNN) with a feature-level fusion strategy, in which Mel-cepstral domain as well as general frequency domain features are incorporated to increase the diversity of the features, is proposed in this paper. In the proposed method, DilationAttenNet is first utilized to construct attention-based CNN feature extractors and then these feature extractors are jointly optimized in MACNN at the feature-level. The attention mechanism aims to suppress irrelevant information and focus on crucial diverse features extracted from the CNN. Extensive experiments are carried out to study the efficacy of the feature level fusion in comparison to that with early fusion. The results show that the proposed MACNN method significantly outperforms the state-of-the-art approaches in terms of accuracy and score for the two publicly available Github and Physionet datasets. The findings of our experiments demonstrated the high performance for heart sound classification based on the proposed MACNN, and hence have potential clinical usefulness in the identification of heart diseases. This technique can assist cardiologists and researchers in the design and development of heart sound classification methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助林夕采纳,获得10
2秒前
薛变霞完成签到 ,获得积分10
2秒前
2秒前
lyh发布了新的文献求助10
2秒前
Larix完成签到 ,获得积分10
3秒前
张朝程发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
007发布了新的文献求助10
4秒前
jasar关注了科研通微信公众号
4秒前
共享精神应助柔弱小之采纳,获得10
5秒前
优雅山柏完成签到,获得积分10
8秒前
薰硝壤应助乱码采纳,获得30
8秒前
gugu发布了新的文献求助10
9秒前
顾矜应助郭达9527采纳,获得10
10秒前
10秒前
11秒前
自然千山完成签到,获得积分10
11秒前
ding应助Millennial采纳,获得10
13秒前
薰硝壤应助猪小呆采纳,获得10
13秒前
13秒前
jihui发布了新的文献求助10
14秒前
14秒前
Ar完成签到,获得积分20
15秒前
15秒前
15秒前
Inicly发布了新的文献求助30
16秒前
17秒前
曾开心完成签到,获得积分10
17秒前
Ar发布了新的文献求助10
18秒前
蓝天蓝应助阡陌采纳,获得10
18秒前
高兴冬灵发布了新的文献求助10
19秒前
20秒前
sam完成签到,获得积分10
20秒前
桐桐应助席傲柏采纳,获得10
21秒前
lily88发布了新的文献求助10
21秒前
22秒前
gugu完成签到,获得积分10
22秒前
xzy998发布了新的文献求助10
22秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141127
求助须知:如何正确求助?哪些是违规求助? 2792031
关于积分的说明 7801479
捐赠科研通 2448267
什么是DOI,文献DOI怎么找? 1302482
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601226