A Predictive Algorithm for Discriminating Myeloid Malignancies and Leukemoid Reactions

白细胞增多症 类白血病反应 医学 髓样 医学诊断 算法 机器学习 白细胞 内科学 人工智能 病理 计算机科学
作者
Varun Iyengar,Amanda M. Meyer,Eleanor Stedman,Sue A. Casale,Simran Kalsi,Andrew J. Hale,Jason A. Freed
出处
期刊:The American Journal of Medicine [Elsevier]
标识
DOI:10.1016/j.amjmed.2024.03.015
摘要

Background: Adults presenting with a neutrophil-predominant leukocytosis (white cell count >50,000/μL) often necessitate urgent medical management. These patients are diagnosed with either acute presentations of chronic myeloid malignancies or leukemoid reactions, yet accurate models to distinguish between these entities do not exist. We used demographic and lab data to build a machine learning model capable of discriminating between these diagnoses. Methods: The medical record at a tertiary care medical center was queried to identify adults with instances of white counts greater than 50,000/μL and >50% neutrophils from 2000-2021. For each patient, a full set of demographic and lab values were extracted at the time of their first presentation with a white count >50,000/μL. We generated a series of models in which the parameters most predictive of myeloid malignancies were identified, and a supervised machine learning approach was applied to the dataset. Results: Our best model – using a support vector machine algorithm – produced a sensitivity of 96.0% and a specificity of 95.9% (area under the curve = 0.982) for identifying myeloid malignancies. We also identified a clinically meaningful and significant disparity in outcomes based on diagnosis – a six-fold increase in 12-month mortality in those diagnosed with leukemoid reactions. Conclusions: These findings need to be validated but fill an unmet need for timely and accurate diagnosis in the setting of profound, neutrophil-predominant leukocytosis and support the use of predictive models as a means to improve patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yzy发布了新的文献求助10
刚刚
从来都不会放弃zr完成签到,获得积分10
刚刚
点点发布了新的文献求助10
刚刚
科研通AI2S应助Feng采纳,获得10
刚刚
张小小完成签到,获得积分10
刚刚
hata发布了新的文献求助10
1秒前
1秒前
yangyangyang发布了新的文献求助10
1秒前
keran发布了新的文献求助10
1秒前
shin0324完成签到,获得积分10
2秒前
pencil123应助易达采纳,获得10
2秒前
守约完成签到,获得积分10
3秒前
4秒前
4秒前
愤怒的之玉完成签到 ,获得积分10
5秒前
5秒前
欧阳小枫完成签到,获得积分10
5秒前
江海下百川完成签到,获得积分10
5秒前
5秒前
JamesPei应助小宇采纳,获得10
6秒前
6秒前
阿桂完成签到,获得积分10
6秒前
6秒前
沙比完成签到,获得积分10
7秒前
一一完成签到,获得积分10
7秒前
MicroCytoYL完成签到,获得积分10
8秒前
8秒前
一只特立独行的朱完成签到,获得积分10
8秒前
步行街车神ahua完成签到,获得积分10
8秒前
8秒前
keran完成签到,获得积分20
8秒前
1111发布了新的文献求助10
8秒前
动如脱兔发布了新的文献求助10
9秒前
starry完成签到,获得积分10
9秒前
10秒前
Grayball应助愉快的冰珍采纳,获得10
10秒前
10秒前
11秒前
Pangsj发布了新的文献求助10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672