A Predictive Algorithm for Discriminating Myeloid Malignancies and Leukemoid Reactions

白细胞增多症 类白血病反应 医学 髓样 医学诊断 算法 机器学习 白细胞 内科学 人工智能 病理 计算机科学
作者
Varun Iyengar,Amanda M. Meyer,Eleanor Stedman,Sue A. Casale,Simran Kalsi,Andrew J. Hale,Jason A. Freed
出处
期刊:The American Journal of Medicine [Elsevier]
标识
DOI:10.1016/j.amjmed.2024.03.015
摘要

Background: Adults presenting with a neutrophil-predominant leukocytosis (white cell count >50,000/μL) often necessitate urgent medical management. These patients are diagnosed with either acute presentations of chronic myeloid malignancies or leukemoid reactions, yet accurate models to distinguish between these entities do not exist. We used demographic and lab data to build a machine learning model capable of discriminating between these diagnoses. Methods: The medical record at a tertiary care medical center was queried to identify adults with instances of white counts greater than 50,000/μL and >50% neutrophils from 2000-2021. For each patient, a full set of demographic and lab values were extracted at the time of their first presentation with a white count >50,000/μL. We generated a series of models in which the parameters most predictive of myeloid malignancies were identified, and a supervised machine learning approach was applied to the dataset. Results: Our best model – using a support vector machine algorithm – produced a sensitivity of 96.0% and a specificity of 95.9% (area under the curve = 0.982) for identifying myeloid malignancies. We also identified a clinically meaningful and significant disparity in outcomes based on diagnosis – a six-fold increase in 12-month mortality in those diagnosed with leukemoid reactions. Conclusions: These findings need to be validated but fill an unmet need for timely and accurate diagnosis in the setting of profound, neutrophil-predominant leukocytosis and support the use of predictive models as a means to improve patient outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mama完成签到,获得积分20
1秒前
常存喜乐完成签到 ,获得积分10
1秒前
大模型应助快乐篮球采纳,获得10
1秒前
GYR发布了新的文献求助10
2秒前
2秒前
棉花团完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
小马甲应助李里哩采纳,获得10
4秒前
strive发布了新的文献求助10
4秒前
小蘑菇应助satchzhao采纳,获得10
5秒前
梓树发布了新的文献求助10
6秒前
彭于晏应助喜喜不嘻嘻采纳,获得10
6秒前
故槿完成签到 ,获得积分10
7秒前
乙未发布了新的文献求助10
8秒前
8秒前
大模型应助honey采纳,获得10
8秒前
HY发布了新的文献求助10
8秒前
9秒前
模糊老师完成签到,获得积分10
10秒前
10秒前
碧霄完成签到,获得积分10
11秒前
沉默的瑞宝完成签到 ,获得积分10
11秒前
Adam_Lan完成签到,获得积分10
11秒前
顾矜应助明理的帆布鞋采纳,获得10
12秒前
12秒前
乐乐应助乙未采纳,获得10
13秒前
Hello应助儒雅致远采纳,获得10
14秒前
lalalal发布了新的文献求助10
14秒前
15秒前
轨迹应助嘿嘿采纳,获得10
15秒前
Decline发布了新的文献求助10
15秒前
大胆的映萱关注了科研通微信公众号
15秒前
GYR完成签到,获得积分10
16秒前
刘小蕊完成签到,获得积分10
16秒前
花木兰发布了新的文献求助10
16秒前
yuaner发布了新的文献求助10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695061
求助须知:如何正确求助?哪些是违规求助? 5099914
关于积分的说明 15215127
捐赠科研通 4851509
什么是DOI,文献DOI怎么找? 2602393
邀请新用户注册赠送积分活动 1554207
关于科研通互助平台的介绍 1512167