A Predictive Algorithm for Discriminating Myeloid Malignancies and Leukemoid Reactions

白细胞增多症 类白血病反应 医学 髓样 医学诊断 算法 机器学习 白细胞 内科学 人工智能 病理 计算机科学
作者
Varun Iyengar,Amanda M. Meyer,Eleanor Stedman,Sue A. Casale,Simran Kalsi,Andrew J. Hale,Jason A. Freed
出处
期刊:The American Journal of Medicine [Elsevier BV]
标识
DOI:10.1016/j.amjmed.2024.03.015
摘要

Background: Adults presenting with a neutrophil-predominant leukocytosis (white cell count >50,000/μL) often necessitate urgent medical management. These patients are diagnosed with either acute presentations of chronic myeloid malignancies or leukemoid reactions, yet accurate models to distinguish between these entities do not exist. We used demographic and lab data to build a machine learning model capable of discriminating between these diagnoses. Methods: The medical record at a tertiary care medical center was queried to identify adults with instances of white counts greater than 50,000/μL and >50% neutrophils from 2000-2021. For each patient, a full set of demographic and lab values were extracted at the time of their first presentation with a white count >50,000/μL. We generated a series of models in which the parameters most predictive of myeloid malignancies were identified, and a supervised machine learning approach was applied to the dataset. Results: Our best model – using a support vector machine algorithm – produced a sensitivity of 96.0% and a specificity of 95.9% (area under the curve = 0.982) for identifying myeloid malignancies. We also identified a clinically meaningful and significant disparity in outcomes based on diagnosis – a six-fold increase in 12-month mortality in those diagnosed with leukemoid reactions. Conclusions: These findings need to be validated but fill an unmet need for timely and accurate diagnosis in the setting of profound, neutrophil-predominant leukocytosis and support the use of predictive models as a means to improve patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寡核苷酸小白完成签到 ,获得积分10
刚刚
JESSE发布了新的文献求助10
刚刚
Furina完成签到,获得积分10
刚刚
lyn完成签到,获得积分10
1秒前
yyy发布了新的文献求助10
4秒前
tie完成签到,获得积分10
5秒前
酷波er应助风清扬采纳,获得30
6秒前
细腻驳完成签到,获得积分10
6秒前
朴实初夏完成签到 ,获得积分10
7秒前
zhang完成签到,获得积分10
7秒前
Lsmile完成签到 ,获得积分10
8秒前
微笑的水桃完成签到 ,获得积分10
8秒前
砥砺完成签到,获得积分10
8秒前
打打应助YXH采纳,获得10
9秒前
坚守初心完成签到,获得积分10
9秒前
他忽然的人完成签到 ,获得积分10
10秒前
细腻天蓝完成签到 ,获得积分10
10秒前
斯文麦片完成签到 ,获得积分10
11秒前
优美甜瓜完成签到,获得积分10
12秒前
qqdm完成签到 ,获得积分10
12秒前
义气尔芙完成签到,获得积分10
12秒前
大个应助淡淡的雨文采纳,获得10
13秒前
朱依敏发布了新的文献求助10
13秒前
王叮叮完成签到,获得积分10
15秒前
依古比古完成签到 ,获得积分10
16秒前
Fantansy完成签到,获得积分10
16秒前
包包酱完成签到,获得积分10
18秒前
Lauren完成签到 ,获得积分10
19秒前
脑洞疼应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
dong应助科研通管家采纳,获得20
19秒前
领导范儿应助科研通管家采纳,获得10
19秒前
慕青应助科研通管家采纳,获得10
19秒前
小青椒应助科研通管家采纳,获得30
19秒前
李健应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得10
19秒前
上官若男应助科研通管家采纳,获得10
19秒前
折木浮华完成签到,获得积分10
19秒前
丘比特应助科研通管家采纳,获得10
19秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212724
求助须知:如何正确求助?哪些是违规求助? 4388755
关于积分的说明 13664611
捐赠科研通 4249384
什么是DOI,文献DOI怎么找? 2331550
邀请新用户注册赠送积分活动 1329282
关于科研通互助平台的介绍 1282695