亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Predictive Algorithm for Discriminating Myeloid Malignancies and Leukemoid Reactions

白细胞增多症 类白血病反应 医学 髓样 医学诊断 算法 机器学习 白细胞 内科学 人工智能 病理 计算机科学
作者
Varun Iyengar,Amanda M. Meyer,Eleanor Stedman,Sue A. Casale,Simran Kalsi,Andrew J. Hale,Jason A. Freed
出处
期刊:The American Journal of Medicine [Elsevier BV]
标识
DOI:10.1016/j.amjmed.2024.03.015
摘要

Background: Adults presenting with a neutrophil-predominant leukocytosis (white cell count >50,000/μL) often necessitate urgent medical management. These patients are diagnosed with either acute presentations of chronic myeloid malignancies or leukemoid reactions, yet accurate models to distinguish between these entities do not exist. We used demographic and lab data to build a machine learning model capable of discriminating between these diagnoses. Methods: The medical record at a tertiary care medical center was queried to identify adults with instances of white counts greater than 50,000/μL and >50% neutrophils from 2000-2021. For each patient, a full set of demographic and lab values were extracted at the time of their first presentation with a white count >50,000/μL. We generated a series of models in which the parameters most predictive of myeloid malignancies were identified, and a supervised machine learning approach was applied to the dataset. Results: Our best model – using a support vector machine algorithm – produced a sensitivity of 96.0% and a specificity of 95.9% (area under the curve = 0.982) for identifying myeloid malignancies. We also identified a clinically meaningful and significant disparity in outcomes based on diagnosis – a six-fold increase in 12-month mortality in those diagnosed with leukemoid reactions. Conclusions: These findings need to be validated but fill an unmet need for timely and accurate diagnosis in the setting of profound, neutrophil-predominant leukocytosis and support the use of predictive models as a means to improve patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
8秒前
闲逛的木头2完成签到,获得积分20
15秒前
捉迷藏完成签到,获得积分0
30秒前
馆长应助科研通管家采纳,获得10
45秒前
迅速的岩完成签到,获得积分10
1分钟前
HYQ完成签到 ,获得积分10
1分钟前
2分钟前
嘻嘻完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
ding应助科研通管家采纳,获得10
2分钟前
徐凤年完成签到,获得积分10
2分钟前
沐雨微寒完成签到,获得积分10
3分钟前
3分钟前
3分钟前
欣慰外套完成签到 ,获得积分10
4分钟前
yindi1991完成签到 ,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
美满的小蘑菇完成签到 ,获得积分10
5分钟前
6分钟前
乐乐应助科研通管家采纳,获得10
6分钟前
7分钟前
瘦瘦的枫叶完成签到 ,获得积分10
7分钟前
7分钟前
量子星尘发布了新的文献求助10
7分钟前
陀思妥耶夫斯基完成签到 ,获得积分10
7分钟前
张杰列夫完成签到 ,获得积分10
8分钟前
JamesPei应助科研通管家采纳,获得10
8分钟前
馆长应助科研通管家采纳,获得20
8分钟前
馆长应助科研通管家采纳,获得10
8分钟前
馆长应助科研通管家采纳,获得10
8分钟前
花落无声完成签到 ,获得积分10
9分钟前
9分钟前
Lily完成签到,获得积分10
9分钟前
9分钟前
Lily发布了新的文献求助10
9分钟前
9分钟前
量子星尘发布了新的文献求助10
9分钟前
Jim完成签到,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596068
求助须知:如何正确求助?哪些是违规求助? 4008190
关于积分的说明 12408923
捐赠科研通 3687090
什么是DOI,文献DOI怎么找? 2032193
邀请新用户注册赠送积分活动 1065428
科研通“疑难数据库(出版商)”最低求助积分说明 950759