亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Predictive Algorithm for Discriminating Myeloid Malignancies and Leukemoid Reactions

白细胞增多症 类白血病反应 医学 髓样 医学诊断 算法 机器学习 白细胞 内科学 人工智能 病理 计算机科学
作者
Varun Iyengar,Amanda M. Meyer,Eleanor Stedman,Sue A. Casale,Simran Kalsi,Andrew J. Hale,Jason A. Freed
出处
期刊:The American Journal of Medicine [Elsevier]
标识
DOI:10.1016/j.amjmed.2024.03.015
摘要

Background: Adults presenting with a neutrophil-predominant leukocytosis (white cell count >50,000/μL) often necessitate urgent medical management. These patients are diagnosed with either acute presentations of chronic myeloid malignancies or leukemoid reactions, yet accurate models to distinguish between these entities do not exist. We used demographic and lab data to build a machine learning model capable of discriminating between these diagnoses. Methods: The medical record at a tertiary care medical center was queried to identify adults with instances of white counts greater than 50,000/μL and >50% neutrophils from 2000-2021. For each patient, a full set of demographic and lab values were extracted at the time of their first presentation with a white count >50,000/μL. We generated a series of models in which the parameters most predictive of myeloid malignancies were identified, and a supervised machine learning approach was applied to the dataset. Results: Our best model – using a support vector machine algorithm – produced a sensitivity of 96.0% and a specificity of 95.9% (area under the curve = 0.982) for identifying myeloid malignancies. We also identified a clinically meaningful and significant disparity in outcomes based on diagnosis – a six-fold increase in 12-month mortality in those diagnosed with leukemoid reactions. Conclusions: These findings need to be validated but fill an unmet need for timely and accurate diagnosis in the setting of profound, neutrophil-predominant leukocytosis and support the use of predictive models as a means to improve patient outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白菜完成签到,获得积分10
5秒前
传奇3应助liuliu采纳,获得10
14秒前
小小完成签到 ,获得积分10
20秒前
Lin完成签到 ,获得积分10
23秒前
李健应助科研通管家采纳,获得10
36秒前
36秒前
36秒前
Criminology34应助科研通管家采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
Criminology34应助科研通管家采纳,获得10
37秒前
Criminology34应助科研通管家采纳,获得10
37秒前
Criminology34应助科研通管家采纳,获得10
37秒前
思源应助科研通管家采纳,获得10
37秒前
Criminology34应助科研通管家采纳,获得10
37秒前
1分钟前
热情依白完成签到 ,获得积分10
1分钟前
liuliu发布了新的文献求助10
1分钟前
1分钟前
Yu发布了新的文献求助10
1分钟前
1分钟前
雷金炜发布了新的文献求助30
1分钟前
1分钟前
热心的豌豆完成签到 ,获得积分10
1分钟前
2分钟前
123完成签到 ,获得积分10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
3分钟前
董羽佳完成签到,获得积分10
3分钟前
Zjf发布了新的文献求助10
3分钟前
可爱的函函应助摇匀采纳,获得10
3分钟前
3分钟前
Zjf完成签到,获得积分10
3分钟前
柠栀完成签到 ,获得积分10
3分钟前
3分钟前
兔子驳回了今后应助
3分钟前
GGBOND完成签到,获得积分10
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764166
求助须知:如何正确求助?哪些是违规求助? 5548370
关于积分的说明 15405932
捐赠科研通 4899524
什么是DOI,文献DOI怎么找? 2635707
邀请新用户注册赠送积分活动 1583871
关于科研通互助平台的介绍 1538990