A Predictive Algorithm for Discriminating Myeloid Malignancies and Leukemoid Reactions

白细胞增多症 类白血病反应 医学 髓样 医学诊断 算法 机器学习 白细胞 内科学 人工智能 病理 计算机科学
作者
Varun Iyengar,Amanda M. Meyer,Eleanor Stedman,Sue A. Casale,Simran Kalsi,Andrew J. Hale,Jason A. Freed
出处
期刊:The American Journal of Medicine [Elsevier BV]
标识
DOI:10.1016/j.amjmed.2024.03.015
摘要

Background: Adults presenting with a neutrophil-predominant leukocytosis (white cell count >50,000/μL) often necessitate urgent medical management. These patients are diagnosed with either acute presentations of chronic myeloid malignancies or leukemoid reactions, yet accurate models to distinguish between these entities do not exist. We used demographic and lab data to build a machine learning model capable of discriminating between these diagnoses. Methods: The medical record at a tertiary care medical center was queried to identify adults with instances of white counts greater than 50,000/μL and >50% neutrophils from 2000-2021. For each patient, a full set of demographic and lab values were extracted at the time of their first presentation with a white count >50,000/μL. We generated a series of models in which the parameters most predictive of myeloid malignancies were identified, and a supervised machine learning approach was applied to the dataset. Results: Our best model – using a support vector machine algorithm – produced a sensitivity of 96.0% and a specificity of 95.9% (area under the curve = 0.982) for identifying myeloid malignancies. We also identified a clinically meaningful and significant disparity in outcomes based on diagnosis – a six-fold increase in 12-month mortality in those diagnosed with leukemoid reactions. Conclusions: These findings need to be validated but fill an unmet need for timely and accurate diagnosis in the setting of profound, neutrophil-predominant leukocytosis and support the use of predictive models as a means to improve patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣慰电脑完成签到,获得积分10
1秒前
魔幻蓉完成签到,获得积分10
1秒前
1秒前
小二郎应助wuyan采纳,获得10
1秒前
Ethan完成签到,获得积分10
1秒前
Hindiii完成签到,获得积分10
2秒前
2秒前
Hannah601完成签到 ,获得积分10
3秒前
崔悦欣完成签到,获得积分10
3秒前
3秒前
3秒前
搞怪网络完成签到,获得积分10
4秒前
小二郎应助τ涛采纳,获得10
4秒前
zfl完成签到,获得积分10
4秒前
liuxiaoping发布了新的文献求助10
5秒前
虚心的阿松完成签到,获得积分10
5秒前
6秒前
大啊蓉发布了新的文献求助10
6秒前
yueshangshuang完成签到,获得积分10
6秒前
斯文败类应助科研大佬采纳,获得10
6秒前
6秒前
meimei发布了新的文献求助10
6秒前
CCC完成签到,获得积分10
6秒前
7秒前
邵洋完成签到,获得积分10
7秒前
安静问晴完成签到,获得积分10
7秒前
8秒前
无望幽月完成签到,获得积分10
8秒前
8秒前
早早干饭完成签到,获得积分10
8秒前
sciAAA完成签到,获得积分10
8秒前
醒醒完成签到,获得积分10
8秒前
小号完成签到,获得积分10
9秒前
爆米花应助晓湫采纳,获得20
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
舒适涵山完成签到,获得积分10
9秒前
bkagyin应助科研通管家采纳,获得30
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
iNk应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960462
求助须知:如何正确求助?哪些是违规求助? 3506587
关于积分的说明 11131436
捐赠科研通 3238853
什么是DOI,文献DOI怎么找? 1789898
邀请新用户注册赠送积分活动 872032
科研通“疑难数据库(出版商)”最低求助积分说明 803118