A Predictive Algorithm for Discriminating Myeloid Malignancies and Leukemoid Reactions

白细胞增多症 类白血病反应 医学 髓样 医学诊断 算法 机器学习 白细胞 内科学 人工智能 病理 计算机科学
作者
Varun Iyengar,Amanda M. Meyer,Eleanor Stedman,Sue A. Casale,Simran Kalsi,Andrew J. Hale,Jason A. Freed
出处
期刊:The American Journal of Medicine [Elsevier]
标识
DOI:10.1016/j.amjmed.2024.03.015
摘要

Background: Adults presenting with a neutrophil-predominant leukocytosis (white cell count >50,000/μL) often necessitate urgent medical management. These patients are diagnosed with either acute presentations of chronic myeloid malignancies or leukemoid reactions, yet accurate models to distinguish between these entities do not exist. We used demographic and lab data to build a machine learning model capable of discriminating between these diagnoses. Methods: The medical record at a tertiary care medical center was queried to identify adults with instances of white counts greater than 50,000/μL and >50% neutrophils from 2000-2021. For each patient, a full set of demographic and lab values were extracted at the time of their first presentation with a white count >50,000/μL. We generated a series of models in which the parameters most predictive of myeloid malignancies were identified, and a supervised machine learning approach was applied to the dataset. Results: Our best model – using a support vector machine algorithm – produced a sensitivity of 96.0% and a specificity of 95.9% (area under the curve = 0.982) for identifying myeloid malignancies. We also identified a clinically meaningful and significant disparity in outcomes based on diagnosis – a six-fold increase in 12-month mortality in those diagnosed with leukemoid reactions. Conclusions: These findings need to be validated but fill an unmet need for timely and accurate diagnosis in the setting of profound, neutrophil-predominant leukocytosis and support the use of predictive models as a means to improve patient outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Julia完成签到 ,获得积分10
1秒前
含蓄冰蓝完成签到,获得积分10
1秒前
2秒前
2秒前
4秒前
圆彰七大完成签到 ,获得积分10
5秒前
含蓄冰蓝发布了新的文献求助10
6秒前
7秒前
yy完成签到,获得积分10
8秒前
快乐的小胖完成签到,获得积分10
10秒前
yy完成签到,获得积分10
12秒前
混合结构完成签到 ,获得积分10
14秒前
斑ban发布了新的文献求助10
14秒前
深情安青应助yy采纳,获得10
15秒前
17秒前
kid发布了新的文献求助10
22秒前
lizishu举报典雅的灵煌求助涉嫌违规
25秒前
temaxs完成签到 ,获得积分10
28秒前
华仔应助大胆夏兰采纳,获得10
29秒前
完美世界应助kid采纳,获得10
30秒前
凶狠的姚完成签到 ,获得积分10
30秒前
35秒前
39秒前
潇洒斑马完成签到 ,获得积分10
40秒前
rui完成签到 ,获得积分10
52秒前
52秒前
科研通AI2S应助美琦采纳,获得10
54秒前
光亮的睿渊完成签到 ,获得积分10
55秒前
Forever完成签到 ,获得积分10
56秒前
SSY完成签到 ,获得积分10
56秒前
Dr.c发布了新的文献求助10
57秒前
xiaosi完成签到 ,获得积分10
57秒前
叮叮当当发布了新的文献求助200
58秒前
科研通AI6.1应助Chengcheng采纳,获得10
58秒前
TKTK发布了新的文献求助30
58秒前
花泽秀完成签到,获得积分10
1分钟前
1分钟前
TKTK完成签到,获得积分10
1分钟前
1分钟前
几酌发布了新的文献求助10
1分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847567
求助须知:如何正确求助?哪些是违规求助? 6227695
关于积分的说明 15620595
捐赠科研通 4964265
什么是DOI,文献DOI怎么找? 2676537
邀请新用户注册赠送积分活动 1621054
关于科研通互助平台的介绍 1576998