A Predictive Algorithm for Discriminating Myeloid Malignancies and Leukemoid Reactions

白细胞增多症 类白血病反应 医学 髓样 医学诊断 算法 机器学习 白细胞 内科学 人工智能 病理 计算机科学
作者
Varun Iyengar,Amanda M. Meyer,Eleanor Stedman,Sue A. Casale,Simran Kalsi,Andrew J. Hale,Jason A. Freed
出处
期刊:The American Journal of Medicine [Elsevier]
标识
DOI:10.1016/j.amjmed.2024.03.015
摘要

Background: Adults presenting with a neutrophil-predominant leukocytosis (white cell count >50,000/μL) often necessitate urgent medical management. These patients are diagnosed with either acute presentations of chronic myeloid malignancies or leukemoid reactions, yet accurate models to distinguish between these entities do not exist. We used demographic and lab data to build a machine learning model capable of discriminating between these diagnoses. Methods: The medical record at a tertiary care medical center was queried to identify adults with instances of white counts greater than 50,000/μL and >50% neutrophils from 2000-2021. For each patient, a full set of demographic and lab values were extracted at the time of their first presentation with a white count >50,000/μL. We generated a series of models in which the parameters most predictive of myeloid malignancies were identified, and a supervised machine learning approach was applied to the dataset. Results: Our best model – using a support vector machine algorithm – produced a sensitivity of 96.0% and a specificity of 95.9% (area under the curve = 0.982) for identifying myeloid malignancies. We also identified a clinically meaningful and significant disparity in outcomes based on diagnosis – a six-fold increase in 12-month mortality in those diagnosed with leukemoid reactions. Conclusions: These findings need to be validated but fill an unmet need for timely and accurate diagnosis in the setting of profound, neutrophil-predominant leukocytosis and support the use of predictive models as a means to improve patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
April发布了新的文献求助30
刚刚
刚刚
冷酷尔安完成签到,获得积分20
1秒前
1秒前
苏星星发布了新的文献求助10
1秒前
孙尧芳发布了新的文献求助30
2秒前
weikang发布了新的文献求助10
2秒前
Stella应助曾经青亦采纳,获得30
2秒前
4秒前
计划发布了新的文献求助10
5秒前
歪咪发布了新的文献求助10
5秒前
5秒前
刘文辉完成签到,获得积分10
5秒前
闪闪机器猫完成签到,获得积分10
5秒前
上官若男应助Tangyartie采纳,获得10
6秒前
6秒前
文献使者完成签到,获得积分10
6秒前
酷酷的笔记本完成签到,获得积分10
7秒前
7秒前
浮游应助LL采纳,获得10
7秒前
8秒前
Lazarus完成签到,获得积分10
8秒前
8秒前
欧小嘢完成签到,获得积分10
9秒前
9秒前
Akim应助润润轩轩采纳,获得10
9秒前
10秒前
10秒前
10秒前
淡淡大山完成签到,获得积分10
10秒前
NexusExplorer应助weihuang采纳,获得10
11秒前
柠檬泡芙完成签到,获得积分10
11秒前
renjh完成签到,获得积分10
11秒前
12秒前
103x发布了新的文献求助10
12秒前
91ge完成签到 ,获得积分10
12秒前
窦无剑发布了新的文献求助10
12秒前
minggalaxy007发布了新的文献求助10
12秒前
哈基米完成签到 ,获得积分10
12秒前
小罗黑的完成签到,获得积分10
12秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338438
求助须知:如何正确求助?哪些是违规求助? 4475552
关于积分的说明 13928668
捐赠科研通 4370833
什么是DOI,文献DOI怎么找? 2401451
邀请新用户注册赠送积分活动 1394568
关于科研通互助平台的介绍 1366401