A Predictive Algorithm for Discriminating Myeloid Malignancies and Leukemoid Reactions

白细胞增多症 类白血病反应 医学 髓样 医学诊断 算法 机器学习 白细胞 内科学 人工智能 病理 计算机科学
作者
Varun Iyengar,Amanda M. Meyer,Eleanor Stedman,Sue A. Casale,Simran Kalsi,Andrew J. Hale,Jason A. Freed
出处
期刊:The American Journal of Medicine [Elsevier]
标识
DOI:10.1016/j.amjmed.2024.03.015
摘要

Background: Adults presenting with a neutrophil-predominant leukocytosis (white cell count >50,000/μL) often necessitate urgent medical management. These patients are diagnosed with either acute presentations of chronic myeloid malignancies or leukemoid reactions, yet accurate models to distinguish between these entities do not exist. We used demographic and lab data to build a machine learning model capable of discriminating between these diagnoses. Methods: The medical record at a tertiary care medical center was queried to identify adults with instances of white counts greater than 50,000/μL and >50% neutrophils from 2000-2021. For each patient, a full set of demographic and lab values were extracted at the time of their first presentation with a white count >50,000/μL. We generated a series of models in which the parameters most predictive of myeloid malignancies were identified, and a supervised machine learning approach was applied to the dataset. Results: Our best model – using a support vector machine algorithm – produced a sensitivity of 96.0% and a specificity of 95.9% (area under the curve = 0.982) for identifying myeloid malignancies. We also identified a clinically meaningful and significant disparity in outcomes based on diagnosis – a six-fold increase in 12-month mortality in those diagnosed with leukemoid reactions. Conclusions: These findings need to be validated but fill an unmet need for timely and accurate diagnosis in the setting of profound, neutrophil-predominant leukocytosis and support the use of predictive models as a means to improve patient outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Luobing发布了新的文献求助10
1秒前
李洋完成签到,获得积分10
1秒前
碎碎念发布了新的文献求助10
1秒前
指南针指北完成签到 ,获得积分10
2秒前
隔壁老王完成签到,获得积分10
2秒前
赖赖发布了新的文献求助10
2秒前
科研通AI6应助可爱的渊思采纳,获得10
3秒前
三月雪卿完成签到,获得积分10
3秒前
Dora发布了新的文献求助10
3秒前
4秒前
君临天下完成签到,获得积分10
5秒前
5秒前
Z2发布了新的文献求助10
5秒前
Regsey完成签到,获得积分10
5秒前
Marybaby完成签到,获得积分10
6秒前
踏实数据线完成签到,获得积分10
6秒前
轩辕易完成签到 ,获得积分10
6秒前
7秒前
科研通AI6应助wu采纳,获得10
7秒前
维棋完成签到 ,获得积分10
7秒前
7秒前
8秒前
Orange应助Micro9采纳,获得10
9秒前
9秒前
9秒前
清欲发布了新的文献求助10
9秒前
serendipity发布了新的文献求助10
9秒前
江竹兰完成签到,获得积分10
10秒前
素隐完成签到,获得积分20
10秒前
11秒前
a1313发布了新的文献求助10
11秒前
9700关注了科研通微信公众号
11秒前
汉堡包应助安静的小蚂蚁采纳,获得10
11秒前
77发布了新的文献求助10
12秒前
quartz完成签到,获得积分10
13秒前
科研小白发布了新的文献求助10
13秒前
13秒前
上官若男应助uuaopiggy采纳,获得30
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589486
求助须知:如何正确求助?哪些是违规求助? 4674213
关于积分的说明 14792351
捐赠科研通 4628515
什么是DOI,文献DOI怎么找? 2532297
邀请新用户注册赠送积分活动 1500964
关于科研通互助平台的介绍 1468454