A Predictive Algorithm for Discriminating Myeloid Malignancies and Leukemoid Reactions

白细胞增多症 类白血病反应 医学 髓样 医学诊断 算法 机器学习 白细胞 内科学 人工智能 病理 计算机科学
作者
Varun Iyengar,Amanda M. Meyer,Eleanor Stedman,Sue A. Casale,Simran Kalsi,Andrew J. Hale,Jason A. Freed
出处
期刊:The American Journal of Medicine [Elsevier]
标识
DOI:10.1016/j.amjmed.2024.03.015
摘要

Background: Adults presenting with a neutrophil-predominant leukocytosis (white cell count >50,000/μL) often necessitate urgent medical management. These patients are diagnosed with either acute presentations of chronic myeloid malignancies or leukemoid reactions, yet accurate models to distinguish between these entities do not exist. We used demographic and lab data to build a machine learning model capable of discriminating between these diagnoses. Methods: The medical record at a tertiary care medical center was queried to identify adults with instances of white counts greater than 50,000/μL and >50% neutrophils from 2000-2021. For each patient, a full set of demographic and lab values were extracted at the time of their first presentation with a white count >50,000/μL. We generated a series of models in which the parameters most predictive of myeloid malignancies were identified, and a supervised machine learning approach was applied to the dataset. Results: Our best model – using a support vector machine algorithm – produced a sensitivity of 96.0% and a specificity of 95.9% (area under the curve = 0.982) for identifying myeloid malignancies. We also identified a clinically meaningful and significant disparity in outcomes based on diagnosis – a six-fold increase in 12-month mortality in those diagnosed with leukemoid reactions. Conclusions: These findings need to be validated but fill an unmet need for timely and accurate diagnosis in the setting of profound, neutrophil-predominant leukocytosis and support the use of predictive models as a means to improve patient outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
华仔应助苗苗会喵喵采纳,获得10
1秒前
3秒前
wayne完成签到,获得积分10
5秒前
zcydbttj2011完成签到 ,获得积分10
9秒前
limo完成签到 ,获得积分10
9秒前
ying完成签到,获得积分10
11秒前
析木完成签到,获得积分10
11秒前
12秒前
olivia完成签到,获得积分10
13秒前
无止完成签到,获得积分10
14秒前
千里毅完成签到,获得积分10
14秒前
科研通AI6应助keyan采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
dddd发布了新的文献求助10
16秒前
16秒前
17秒前
云止发布了新的文献求助10
17秒前
SciGPT应助不知采纳,获得10
17秒前
李德胜完成签到,获得积分10
18秒前
娜娜发布了新的文献求助10
18秒前
21秒前
21秒前
li完成签到,获得积分10
22秒前
小满发布了新的文献求助30
22秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
24秒前
25秒前
GUO完成签到,获得积分10
25秒前
li发布了新的文献求助10
25秒前
青蛙的第二滴口水完成签到,获得积分10
26秒前
26秒前
27秒前
芋圆发布了新的文献求助10
28秒前
28秒前
Jasper应助刘JX采纳,获得10
29秒前
小满完成签到,获得积分20
29秒前
30秒前
宇神完成签到,获得积分10
31秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742315
求助须知:如何正确求助?哪些是违规求助? 5407721
关于积分的说明 15344704
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625220
邀请新用户注册赠送积分活动 1574084
关于科研通互助平台的介绍 1531060