A Predictive Algorithm for Discriminating Myeloid Malignancies and Leukemoid Reactions

白细胞增多症 类白血病反应 医学 髓样 医学诊断 算法 机器学习 白细胞 内科学 人工智能 病理 计算机科学
作者
Varun Iyengar,Amanda M. Meyer,Eleanor Stedman,Sue A. Casale,Simran Kalsi,Andrew J. Hale,Jason A. Freed
出处
期刊:The American Journal of Medicine [Elsevier]
标识
DOI:10.1016/j.amjmed.2024.03.015
摘要

Background: Adults presenting with a neutrophil-predominant leukocytosis (white cell count >50,000/μL) often necessitate urgent medical management. These patients are diagnosed with either acute presentations of chronic myeloid malignancies or leukemoid reactions, yet accurate models to distinguish between these entities do not exist. We used demographic and lab data to build a machine learning model capable of discriminating between these diagnoses. Methods: The medical record at a tertiary care medical center was queried to identify adults with instances of white counts greater than 50,000/μL and >50% neutrophils from 2000-2021. For each patient, a full set of demographic and lab values were extracted at the time of their first presentation with a white count >50,000/μL. We generated a series of models in which the parameters most predictive of myeloid malignancies were identified, and a supervised machine learning approach was applied to the dataset. Results: Our best model – using a support vector machine algorithm – produced a sensitivity of 96.0% and a specificity of 95.9% (area under the curve = 0.982) for identifying myeloid malignancies. We also identified a clinically meaningful and significant disparity in outcomes based on diagnosis – a six-fold increase in 12-month mortality in those diagnosed with leukemoid reactions. Conclusions: These findings need to be validated but fill an unmet need for timely and accurate diagnosis in the setting of profound, neutrophil-predominant leukocytosis and support the use of predictive models as a means to improve patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助每㐬山风采纳,获得30
1秒前
2秒前
3秒前
浮游应助还单身的香菇采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
SWL完成签到,获得积分10
5秒前
标致初晴发布了新的文献求助10
6秒前
SWL发布了新的文献求助10
8秒前
8秒前
顾矜应助xxm采纳,获得10
9秒前
可爱的函函应助标致初晴采纳,获得10
10秒前
Joy关闭了Joy文献求助
10秒前
11秒前
12秒前
Lucas应助qianqina采纳,获得10
12秒前
MTF完成签到 ,获得积分10
12秒前
css1997完成签到 ,获得积分10
13秒前
温暖的书竹完成签到 ,获得积分10
14秒前
yyd发布了新的文献求助10
15秒前
15秒前
swallow发布了新的文献求助10
16秒前
共享精神应助迷路的初柔采纳,获得10
16秒前
16秒前
戴维发布了新的文献求助10
16秒前
YYL完成签到,获得积分10
17秒前
hsss驳回了英姑应助
18秒前
tjcu发布了新的文献求助30
19秒前
22秒前
Iridescent完成签到 ,获得积分10
22秒前
西园寺鹿旎应助tjcu采纳,获得30
23秒前
23秒前
24秒前
twistzz完成签到 ,获得积分10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
CodeCraft应助科研通管家采纳,获得10
25秒前
25秒前
迷路的初柔完成签到,获得积分10
25秒前
情怀应助科研通管家采纳,获得10
25秒前
Owen应助科研通管家采纳,获得10
25秒前
Zx_1993应助科研通管家采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425117
求助须知:如何正确求助?哪些是违规求助? 4539252
关于积分的说明 14166344
捐赠科研通 4456403
什么是DOI,文献DOI怎么找? 2444186
邀请新用户注册赠送积分活动 1435189
关于科研通互助平台的介绍 1412553