A Predictive Algorithm for Discriminating Myeloid Malignancies and Leukemoid Reactions

白细胞增多症 类白血病反应 医学 髓样 医学诊断 算法 机器学习 白细胞 内科学 人工智能 病理 计算机科学
作者
Varun Iyengar,Amanda M. Meyer,Eleanor Stedman,Sue A. Casale,Simran Kalsi,Andrew J. Hale,Jason A. Freed
出处
期刊:The American Journal of Medicine [Elsevier]
标识
DOI:10.1016/j.amjmed.2024.03.015
摘要

Background: Adults presenting with a neutrophil-predominant leukocytosis (white cell count >50,000/μL) often necessitate urgent medical management. These patients are diagnosed with either acute presentations of chronic myeloid malignancies or leukemoid reactions, yet accurate models to distinguish between these entities do not exist. We used demographic and lab data to build a machine learning model capable of discriminating between these diagnoses. Methods: The medical record at a tertiary care medical center was queried to identify adults with instances of white counts greater than 50,000/μL and >50% neutrophils from 2000-2021. For each patient, a full set of demographic and lab values were extracted at the time of their first presentation with a white count >50,000/μL. We generated a series of models in which the parameters most predictive of myeloid malignancies were identified, and a supervised machine learning approach was applied to the dataset. Results: Our best model – using a support vector machine algorithm – produced a sensitivity of 96.0% and a specificity of 95.9% (area under the curve = 0.982) for identifying myeloid malignancies. We also identified a clinically meaningful and significant disparity in outcomes based on diagnosis – a six-fold increase in 12-month mortality in those diagnosed with leukemoid reactions. Conclusions: These findings need to be validated but fill an unmet need for timely and accurate diagnosis in the setting of profound, neutrophil-predominant leukocytosis and support the use of predictive models as a means to improve patient outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特的青曼完成签到,获得积分10
1秒前
Hello应助hhh采纳,获得10
1秒前
lzp完成签到 ,获得积分10
2秒前
无花果应助盼盼采纳,获得10
3秒前
yoyo发布了新的文献求助10
3秒前
guozizi应助素心采纳,获得30
3秒前
3秒前
heqiancan完成签到,获得积分10
4秒前
waws完成签到,获得积分10
4秒前
碧蓝青梦发布了新的文献求助10
5秒前
微笑老太发布了新的文献求助30
5秒前
5秒前
6秒前
量子星尘发布了新的文献求助30
6秒前
风起云涌完成签到,获得积分10
6秒前
7秒前
Au完成签到,获得积分10
7秒前
落后的嚣发布了新的文献求助10
7秒前
Jasper应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
儒雅的蜜粉完成签到,获得积分10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
王先生账号完成签到,获得积分10
8秒前
1101592875应助科研通管家采纳,获得10
8秒前
Orange应助123采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
9秒前
简单小懒虫完成签到 ,获得积分10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
9秒前
天天快乐应助fubi采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
棋士应助科研通管家采纳,获得10
9秒前
现代大神完成签到,获得积分10
9秒前
1101592875应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
9秒前
思源应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733747
求助须知:如何正确求助?哪些是违规求助? 5350934
关于积分的说明 15325244
捐赠科研通 4878769
什么是DOI,文献DOI怎么找? 2621401
邀请新用户注册赠送积分活动 1570515
关于科研通互助平台的介绍 1527476