3D printed multifunctional hierarchical structured cellular silicones with ultraelasticity, extreme load-bearing capacity, shape morphing and sensing properties

变形 承重 材料科学 3D打印 结构工程 方位(导航) 复合材料 计算机科学 工程类 计算机图形学(图像) 人工智能
作者
Yu T. Su,Yaling Zhang,E Liao,Xiaoyan Liu,Changlin Li,Yu Liu,Chengzhen Geng,Ai Lu
出处
期刊:Composite Structures [Elsevier]
卷期号:: 118038-118038
标识
DOI:10.1016/j.compstruct.2024.118038
摘要

Multifunctional lightweight cellular silicone with adjustable properties has aroused great interests in many fields. However, it remains a challenge to facilely prepare multifunctional lightweight porous silicones with high load-bearing capacity. Herein, this work developed a 3D printing technique to prepare lightweight hierarchical structured cellular silicones with macroscale lattice structure and microscale intra-strand close-cell porosities, which was achieved by the expansion of thermally expandable microspheres (TEM) with plastic shells dispersed in formulated silicones. The obtained silicone foam with hierarchical porosity distributions shows excellent mechanical properties, including extreme load-bearing capacity (load is more than 165000 times its weight), high elasticity (negligible stress and strain loss under 80% compression), and high cycle durability (less than 4% strain loss under 1000 compression cycles). Besides, the incorporation of conductive fillers of MWCNTs endowed the foam with multifunctional piezoresistive and temperature-sensing properties. Furthermore, by printing multiple mixture inks of varying expansion ratios, shape morphing ability was endowed to the printed foam, to achieve complex curvature geometry facilely, demonstrating excellent versatility and potential applications in manufacturing flexible and conformal electronics of this method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术小黄完成签到,获得积分10
刚刚
么系么系发布了新的文献求助10
刚刚
1秒前
小洪俊熙完成签到,获得积分10
2秒前
123完成签到,获得积分10
2秒前
SYLH应助di采纳,获得10
2秒前
2秒前
柒毛完成签到 ,获得积分10
3秒前
搜集达人应助tatata采纳,获得20
3秒前
英俊的铭应助诚c采纳,获得10
3秒前
兔子完成签到 ,获得积分10
3秒前
3秒前
苹果巧蕊完成签到 ,获得积分10
3秒前
脑洞疼应助SDS采纳,获得10
3秒前
JamesPei应助Guo采纳,获得20
4秒前
马保国123完成签到,获得积分10
4秒前
4秒前
4秒前
迷你的冰巧完成签到,获得积分10
4秒前
万能图书馆应助学术蝗虫采纳,获得10
5秒前
慕青应助aurora采纳,获得30
5秒前
Jasper应助满意的盼夏采纳,获得10
5秒前
yitang完成签到,获得积分10
7秒前
www完成签到,获得积分10
7秒前
zhenzhen发布了新的文献求助10
7秒前
飞羽发布了新的文献求助10
7秒前
江沅完成签到 ,获得积分10
7秒前
8秒前
8秒前
Sean完成签到,获得积分10
8秒前
兜兜完成签到 ,获得积分10
8秒前
羊羊羊发布了新的文献求助10
9秒前
Rui完成签到,获得积分10
9秒前
bigger.b完成签到,获得积分10
9秒前
Nerissa完成签到,获得积分10
9秒前
Dr.Tang发布了新的文献求助10
9秒前
9秒前
田様应助笑点低蜜蜂采纳,获得10
9秒前
英俊的铭应助么系么系采纳,获得10
10秒前
ding应助寒冷的奇异果采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678