医学
骨关节炎
射线照相术
物理疗法
人口统计学的
公制(单位)
可靠性(半导体)
阶段(地层学)
临床试验
外科
内科学
病理
替代医学
古生物学
生物
功率(物理)
运营管理
物理
人口学
量子力学
社会学
经济
作者
Zubeyir Salis,Jeffrey B. Driban,Timothy E. McAlindon
标识
DOI:10.1016/j.semarthrit.2024.152433
摘要
Identifying participants who will progress to advanced stage in knee osteoarthritis (KOA) trials remains a significant challenge. Current tools, relying on total knee replacements (TKR), fall short in reliability due to the extraneous factors influencing TKR decisions. Acknowledging these limitations, our study identifies a critical need for a more robust metric to assess severe KOA. The end-stage KOA (esKOA) measure, which combines symptomatic and radiographic criteria, serves as a solid indicator. To enhance future trials that use esKOA as an endpoint, our study focuses on developing and validating a machine-learning tool to identify individuals likely to develop esKOA within 2 to 5 years.
科研通智能强力驱动
Strongly Powered by AbleSci AI