Out-of-focus artifact removal for Fresnel incoherent correlation holography by deep learning

工件(错误) 光学(聚焦) 全息术 计算机科学 菲涅耳数 光学 菲涅耳衍射 人工智能 相关性 物理 数学 衍射 几何学
作者
Tao Huang,Jiaosheng Li,Qinnan Zhang,Weina Zhang,Jianglei Di,Difeng Wu,Xiaoxu Lü,Liyun Zhong
出处
期刊:Optics and Lasers in Engineering [Elsevier]
卷期号:178: 108195-108195 被引量:3
标识
DOI:10.1016/j.optlaseng.2024.108195
摘要

Fresnel incoherent correlation holography (FINCH) is a promising three-dimensional (3D) imaging method due to its incoherent illumination and inline optical configuration. However, due to information crosstalk, especially out-of-focus artifacts, the axial resolution of FINCH 3D imaging is limited, and the relationship between the artifacts and the reconstructed image is complex and nonlinear, which is difficult to obtain by traditional optical measurement methods. Here, inspired by the superiority of deep learning in nonlinear mapping over traditional physical methods, we propose and demonstrate a deep learning based out-of-focus artifact removal method for FINCH reconstruction, in which a out-of-focus segmentation convolutional neural network (CNN) is designed for obtaining accurate nonlinear relationship between the artifacts and the reconstructed image by training dataset and optimizing parameters, thereby eliminating information crosstalk in the reconstructed image. Both optical experiment and performance analysis demonstrate the effectiveness and superiority of the designed CNN in realizing out-of-focus artifacts removal. Importantly, this deep learning-based out-of-focus artifacts removal method will provide a useful strategy for realizing high quality 3D imaging of FINCH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
图苏完成签到,获得积分10
1秒前
一木完成签到,获得积分10
2秒前
2秒前
3秒前
怡萱发布了新的文献求助10
3秒前
4秒前
慕青应助菜菜Cc采纳,获得10
4秒前
5秒前
7秒前
小荣发布了新的文献求助10
7秒前
深情安青应助bd采纳,获得10
7秒前
一千岛完成签到,获得积分10
8秒前
nimonimo完成签到,获得积分10
9秒前
Two-Capitals发布了新的文献求助10
10秒前
11秒前
CO_Pro发布了新的文献求助10
12秒前
彳亍1117应助啵啵虎采纳,获得10
14秒前
乐乐应助迅速友容采纳,获得10
14秒前
HC完成签到 ,获得积分10
15秒前
赘婿应助少寒采纳,获得10
15秒前
16秒前
dasheenly发布了新的文献求助10
17秒前
跳跃尔琴发布了新的文献求助10
18秒前
吴建文完成签到 ,获得积分10
18秒前
18秒前
18秒前
kento应助mealies采纳,获得200
19秒前
小蘑菇应助甜甜的又蓝采纳,获得10
22秒前
22秒前
22秒前
zhutu完成签到,获得积分10
23秒前
MAYAN完成签到 ,获得积分10
24秒前
24秒前
阿睿发布了新的文献求助10
24秒前
25秒前
老王发布了新的文献求助30
25秒前
少寒发布了新的文献求助10
27秒前
27秒前
xiaoluuu完成签到 ,获得积分10
28秒前
know完成签到 ,获得积分10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143628
求助须知:如何正确求助?哪些是违规求助? 2795064
关于积分的说明 7813166
捐赠科研通 2451128
什么是DOI,文献DOI怎么找? 1304317
科研通“疑难数据库(出版商)”最低求助积分说明 627213
版权声明 601393