Out-of-focus artifact removal for Fresnel incoherent correlation holography by deep learning

工件(错误) 光学(聚焦) 全息术 计算机科学 菲涅耳数 光学 菲涅耳衍射 人工智能 相关性 物理 数学 衍射 几何学
作者
Tao Huang,Jiaosheng Li,Qinnan Zhang,Weina Zhang,Jianglei Di,Difeng Wu,Xiaoxu Lü,Liyun Zhong
出处
期刊:Optics and Lasers in Engineering [Elsevier]
卷期号:178: 108195-108195 被引量:3
标识
DOI:10.1016/j.optlaseng.2024.108195
摘要

Fresnel incoherent correlation holography (FINCH) is a promising three-dimensional (3D) imaging method due to its incoherent illumination and inline optical configuration. However, due to information crosstalk, especially out-of-focus artifacts, the axial resolution of FINCH 3D imaging is limited, and the relationship between the artifacts and the reconstructed image is complex and nonlinear, which is difficult to obtain by traditional optical measurement methods. Here, inspired by the superiority of deep learning in nonlinear mapping over traditional physical methods, we propose and demonstrate a deep learning based out-of-focus artifact removal method for FINCH reconstruction, in which a out-of-focus segmentation convolutional neural network (CNN) is designed for obtaining accurate nonlinear relationship between the artifacts and the reconstructed image by training dataset and optimizing parameters, thereby eliminating information crosstalk in the reconstructed image. Both optical experiment and performance analysis demonstrate the effectiveness and superiority of the designed CNN in realizing out-of-focus artifacts removal. Importantly, this deep learning-based out-of-focus artifacts removal method will provide a useful strategy for realizing high quality 3D imaging of FINCH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yang完成签到,获得积分10
1秒前
风雨完成签到,获得积分10
1秒前
1秒前
2秒前
彭于晏应助小西采纳,获得30
2秒前
可爱的函函应助布布采纳,获得10
3秒前
4秒前
轩辕德地发布了新的文献求助10
4秒前
nine发布了新的文献求助30
4秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
5秒前
JamesPei应助小敦采纳,获得10
5秒前
今非发布了新的文献求助10
5秒前
李健的小迷弟应助通~采纳,获得30
5秒前
5秒前
5秒前
fanfan44390发布了新的文献求助10
5秒前
Zhang完成签到,获得积分10
6秒前
小二郎应助小田采纳,获得10
7秒前
7秒前
隐形曼青应助liike采纳,获得10
7秒前
phd发布了新的文献求助10
7秒前
7秒前
dingdong发布了新的文献求助30
7秒前
Orange应助清秀的语山采纳,获得50
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
8秒前
无花果应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
8秒前
大李包完成签到,获得积分10
8秒前
思源应助费城青年采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
帮助我的人永远不死完成签到,获得积分20
8秒前
无花果应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794