亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Class-wise Contrastive Prototype Learning for Semi-Supervised Classification under Intersectional Class Mismatch

班级(哲学) 计算机科学 人工智能 一级分类 模式识别(心理学) 机器学习 自然语言处理 支持向量机
作者
Mingyu Li,Tao Zhou,Bo Han,Tongliang Liu,Xinkai Liang,Jiajia Zhao,Chen Gong
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 8145-8156
标识
DOI:10.1109/tmm.2024.3377123
摘要

Traditional Semi-Supervised Learning (SSL) classification methods focus on leveraging unlabeled data to improve the model performance under the setting where labeled set and unlabeled set share the same classes. Nevertheless, the above-mentioned setting is often inconsistent with many real-world circumstances. Practically, both the labeled set and unlabeled set often hold some individual classes, leading to an intersectional class-mismatch setting for SSL. Under this setting, existing SSL methods are often subject to performance degradation attributed to these individual classes. To solve the problem, we propose a Class-wise Contrastive Prototype Learning (CCPL) framework, which can properly utilize the unlabeled data to improve the SSL classification performance. Specifically, we employ a supervised prototype learning strategy and a class-wise contrastive separation strategy to construct a prototype for each known class. To reduce the influence of the individual classes in unlabeled set (i.e., out-of-distribution classes), each unlabeled example can be weighted reasonably based on the prototypes during classifier training, which helps to weaken the negative influence caused by out-of-distribution classes. To reduce the influence of the individual classes in labeled set (i.e., private classes), we present a private assignment suppression strategy to suppress the improper assignments of unlabeled examples to the private classes with the help of the prototypes. Experimental results on four benchmarks and one real-world dataset show that our CCPL has a clear advantage over fourteen representative SSL methods as well as two supervised learning methods under the intersectional class-mismatch setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
典雅青槐完成签到 ,获得积分10
4秒前
10秒前
ning完成签到 ,获得积分10
20秒前
上官若男应助周凯采纳,获得10
23秒前
24秒前
斯文败类应助读书的时候采纳,获得10
35秒前
37秒前
komorebi发布了新的文献求助10
41秒前
Akim应助撒旦asd采纳,获得10
49秒前
56秒前
小宋爱科研完成签到 ,获得积分10
57秒前
非蛋白呼吸商完成签到,获得积分10
59秒前
mengliu完成签到,获得积分0
1分钟前
华仔应助ohhhhhoho采纳,获得10
1分钟前
Criminology34应助komorebi采纳,获得10
1分钟前
1分钟前
zqq完成签到,获得积分0
1分钟前
1分钟前
1分钟前
英俊的铭应助读书的时候采纳,获得10
1分钟前
鱼贝贝完成签到 ,获得积分10
1分钟前
周凯发布了新的文献求助10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
1分钟前
SAIL完成签到 ,获得积分10
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
ohhhhhoho发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
烟消云散完成签到,获得积分10
2分钟前
孙泉发布了新的文献求助10
2分钟前
黎明前发布了新的文献求助10
2分钟前
古今奇观完成签到 ,获得积分10
2分钟前
黎明前完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Weiyu完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731842
求助须知:如何正确求助?哪些是违规求助? 5333685
关于积分的说明 15321719
捐赠科研通 4877673
什么是DOI,文献DOI怎么找? 2620524
邀请新用户注册赠送积分活动 1569833
关于科研通互助平台的介绍 1526289