Class-wise Contrastive Prototype Learning for Semi-Supervised Classification under Intersectional Class Mismatch

班级(哲学) 计算机科学 人工智能 一级分类 模式识别(心理学) 机器学习 自然语言处理 支持向量机
作者
Mingyu Li,Tao Zhou,Bo Han,Tongliang Liu,Xinkai Liang,Jiajia Zhao,Chen Gong
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 8145-8156
标识
DOI:10.1109/tmm.2024.3377123
摘要

Traditional Semi-Supervised Learning (SSL) classification methods focus on leveraging unlabeled data to improve the model performance under the setting where labeled set and unlabeled set share the same classes. Nevertheless, the above-mentioned setting is often inconsistent with many real-world circumstances. Practically, both the labeled set and unlabeled set often hold some individual classes, leading to an intersectional class-mismatch setting for SSL. Under this setting, existing SSL methods are often subject to performance degradation attributed to these individual classes. To solve the problem, we propose a Class-wise Contrastive Prototype Learning (CCPL) framework, which can properly utilize the unlabeled data to improve the SSL classification performance. Specifically, we employ a supervised prototype learning strategy and a class-wise contrastive separation strategy to construct a prototype for each known class. To reduce the influence of the individual classes in unlabeled set (i.e., out-of-distribution classes), each unlabeled example can be weighted reasonably based on the prototypes during classifier training, which helps to weaken the negative influence caused by out-of-distribution classes. To reduce the influence of the individual classes in labeled set (i.e., private classes), we present a private assignment suppression strategy to suppress the improper assignments of unlabeled examples to the private classes with the help of the prototypes. Experimental results on four benchmarks and one real-world dataset show that our CCPL has a clear advantage over fourteen representative SSL methods as well as two supervised learning methods under the intersectional class-mismatch setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
窦房结完成签到 ,获得积分10
刚刚
玩命的化蛹完成签到,获得积分10
1秒前
水硕完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助150
3秒前
xiaofeixia完成签到 ,获得积分10
4秒前
随便起个名完成签到,获得积分10
6秒前
HH完成签到,获得积分10
6秒前
chris完成签到,获得积分10
6秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得150
7秒前
FashionBoy应助科研通管家采纳,获得30
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得150
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
美丽人生完成签到 ,获得积分10
8秒前
雨后完成签到 ,获得积分10
10秒前
Augenstern完成签到,获得积分10
10秒前
溆玉碎兰笑完成签到 ,获得积分10
12秒前
李大胖胖完成签到 ,获得积分10
12秒前
Edou完成签到 ,获得积分10
12秒前
2275523154完成签到,获得积分10
13秒前
豆浆来点蒜泥完成签到,获得积分10
14秒前
简单完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助150
17秒前
nan完成签到,获得积分10
17秒前
Hh完成签到,获得积分10
19秒前
sun完成签到,获得积分10
23秒前
完美世界应助plateauman采纳,获得10
23秒前
嘟嘟豆806完成签到 ,获得积分10
23秒前
freeway完成签到,获得积分10
24秒前
辛勤谷雪完成签到,获得积分10
26秒前
清脆的秋寒完成签到,获得积分10
26秒前
傅家庆完成签到 ,获得积分10
26秒前
yziy完成签到 ,获得积分10
27秒前
现代大神完成签到,获得积分10
32秒前
zy完成签到 ,获得积分10
32秒前
komorebi完成签到 ,获得积分10
33秒前
量子星尘发布了新的文献求助10
33秒前
小龙完成签到 ,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5093339
求助须知:如何正确求助?哪些是违规求助? 4306976
关于积分的说明 13417433
捐赠科研通 4133171
什么是DOI,文献DOI怎么找? 2264356
邀请新用户注册赠送积分活动 1268004
关于科研通互助平台的介绍 1203813