Prognostic modeling for nasopharyngeal carcinoma (NC) undergoing concurrent chemoradiotherapy using clinical and enhanced MRI-Delta radiomics data: A preliminary study

列线图 医学 鼻咽癌 放化疗 单变量分析 内科学 卡帕 肿瘤科 多元分析 回顾性队列研究 单变量 放射科 放射治疗 多元统计 机器学习 哲学 语言学 计算机科学
作者
Li Wang,Peng An,Lina Song,Jun-Jie Liu,Jisheng Liu
出处
期刊:Technology and Health Care [IOS Press]
卷期号:32 (4): 2381-2394 被引量:1
标识
DOI:10.3233/thc-231173
摘要

BACKGROUND: Nasopharyngeal carcinoma (NC) is one of the prevalent malignancies of the head and neck region with poor prognosis. OBJECTIVE: The aim of this study is to establish a predictive model for assessing NC prognosis based on clinical and MR radiomics data, subsequently to develop a nomogram for practical application. METHODS: Retrospective analysis was conducted on clinical and imaging data collected between May 2010 and August 2018, involving 211 patients diagnosed with histologically confirmed NC who received concurrent chemoradiotherapy or radical surgery in Xiangyang No. 1 People’s Hospital. According to 5–10 years of follow-up results, the patients were divided into two groups: the study group (n= 76), which experienced recurrence, metastasis, or death, and the control group (n= 135), characterized by normal survival. Training and testing subsets were established at a 7:3 ratio, with a predefined time cutoff. In the training set, three prediction models were established: a clinical data model, an imaging model, and a combined model using the integrated variation in clinical characteristics along with MR radiomics parameters (Delta-Radscore) observed before and after concurrent chemoradiotherapy. Model performance was compared using Delong’s test, and net clinical benefit was assessed via decision curve analysis (DCA). Then, external validation was conducted on the test set, and finally a nomogram predicting NC prognosis was created. RESULTS: Univariate analysis identified that the risk factors impacting the prognosis of NC included gender, pathological type, neutrophil to lymphocyte ratio (NLR), degree of tumor differentiation, MR enhancement pattern, and Delta-Radscore (P< 0.05). The combined model established based on the abovementioned factors exhibited significantly higher predictive performance [AUC: 0.874, 95% CI (0.810–0.923)] than that of the clinical data model [AUC: 0.650, 95% CI (0.568–0.727)] and imaging model [AUC: 0.824, 95% CI (0.753–0.882)]. DCA also demonstrated superior clinical net benefit in the combined model, a finding further verified by results from the test set. The developed nomogram, based on the combined model, exhibited promising performance in clinical applications. CONCLUSION: The Delta-Radscore derived from MR radiomics data before and after concurrent chemoradiotherapy helps enhance the performance of the NC prognostic model. The combined model and resultant nomogram provide valuable support for clinical decision-making in NC treatment, ultimately contributing to an improved survival rate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
离岸完成签到,获得积分10
刚刚
Michael_li完成签到,获得积分10
1秒前
肉片牛帅帅完成签到,获得积分10
2秒前
Nolan完成签到,获得积分10
2秒前
高大的友梅完成签到 ,获得积分10
3秒前
杨lan完成签到 ,获得积分10
4秒前
uone完成签到,获得积分10
4秒前
realtimes完成签到,获得积分10
4秒前
柠檬普洱茶完成签到,获得积分10
5秒前
称心人达完成签到,获得积分10
7秒前
一水独流完成签到,获得积分10
8秒前
昔昔完成签到 ,获得积分10
10秒前
King完成签到 ,获得积分10
10秒前
科研通AI5应助俭朴涫采纳,获得10
11秒前
Scss完成签到,获得积分10
11秒前
旱田蜗牛完成签到,获得积分10
11秒前
贰叁伍完成签到,获得积分10
12秒前
13秒前
赵怼怼完成签到,获得积分10
14秒前
梦在远方完成签到 ,获得积分10
14秒前
Mr.Ren完成签到,获得积分10
15秒前
嗯呢完成签到 ,获得积分10
18秒前
Xu完成签到,获得积分10
18秒前
xz发布了新的文献求助10
19秒前
ahh完成签到 ,获得积分10
19秒前
小熊完成签到,获得积分20
19秒前
甄遥完成签到,获得积分10
20秒前
王十二完成签到 ,获得积分10
20秒前
爱笑半雪完成签到,获得积分10
20秒前
蝈蝈完成签到,获得积分10
20秒前
21秒前
Tinweng完成签到 ,获得积分10
21秒前
MRJJJJ完成签到,获得积分10
23秒前
tigger完成签到,获得积分10
25秒前
冷艳铁身完成签到 ,获得积分10
25秒前
01259完成签到 ,获得积分10
25秒前
健壮洋葱完成签到 ,获得积分10
25秒前
阿南完成签到 ,获得积分10
26秒前
26秒前
大观天下发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5188343
求助须知:如何正确求助?哪些是违规求助? 4372620
关于积分的说明 13613734
捐赠科研通 4225939
什么是DOI,文献DOI怎么找? 2318042
邀请新用户注册赠送积分活动 1316607
关于科研通互助平台的介绍 1266283