材料科学
自愈水凝胶
活性氧
伤口愈合
生物相容性
药物输送
药理学
纳米技术
医学
生物化学
高分子化学
外科
化学
冶金
作者
Deying Jia,Shuangshuang Li,Mengmeng Jiang,Zongyu Lv,Haipeng Wang,Zhen Zheng
标识
DOI:10.1021/acsami.3c17667
摘要
Chronic wound healing impairment is a significant complication in diabetes. Hydrogels that maintain wound moisture and enable sustained drug release have become prominent for enhancing chronic wound care. Particularly, hydrogels that respond to reactive oxygen species (ROS) are sought-after for their dual capacity to mitigate ROS and facilitate controlled drug delivery at the wound site. We have strategically designed an ROS-responsive and scavenging supramolecular hydrogel composed of the simple hexapeptide Glu-Phe-Met-Phe-Met-Glu (EFM). This hydrogelator, composed solely of canonical amino acids without additional ROS-sensitive motifs, forms a hydrogel rapidly upon sonication. Interaction with ROS leads to the oxidation of Met residues to methionine sulfoxide, triggering hydrogel disassembly and consequent payload release. Cellular assays have verified their biocompatibility and efficacy in promoting cell proliferation and migration. In vivo investigations underscore the potential of this straightforward hydrogel as an ROS-scavenger and drug delivery vehicle, enhancing wound healing in diabetic mice. The simplicity and effectiveness of this hydrogel suggest its broader biomedical applications in the future.
科研通智能强力驱动
Strongly Powered by AbleSci AI