Estimation methods for the state of charge and capacity in various states of health of LiFePO4 batteries

荷电状态 电压 区间(图论) 校准 控制理论(社会学) 计算机科学 统计 工程类 数学 电池(电) 物理 电气工程 功率(物理) 人工智能 组合数学 控制(管理) 量子力学
作者
Zhicheng Zhu,Jiajun Zhu,Wenkai Gao,Yuedong Sun,Changyong Jin,Yuejiu Zheng
出处
期刊:Journal of energy storage [Elsevier]
卷期号:88: 111381-111381 被引量:8
标识
DOI:10.1016/j.est.2024.111381
摘要

Accurately estimating the capacity and state of charge (SOC) of Li-ion batteries at various aging levels is a crucial function of the Battery Management System (BMS). However, the battery's capacity and open circuit voltage (OCV) change as it ages, which poses challenges to accurately estimating the SOC and capacity of aging batteries. To address this problem, the present paper suggests a capacity iterative loop estimation technique that relies on SOC fusion estimation. The aim is to attain precise SOC and capacity estimation of LiFePO4 aging batteries. Firstly, the RC equivalent circuit model's first-order parameters, along with the OCV-SOC comparison table, the SOC correction interval, and the capacity regression interval for various aging stages are obtained offline. Afterwards, the OCV is identified using the least-squares method with a forgetting factor. The SOC estimation is then performed by combining the correction interval with the open-circuit voltage method and the amperage integration method fusion. Finally, the capacity calibration process for the aged battery is achieved through the iterative loop estimation method, employing the capacity regression interval. The aged battery's capacity calibration is achieved through the use of an iterative cycle estimation approach based on the capacity regression interval. The effectiveness of the method is further verified by experiments, which show that the capacity estimation error of the aged battery is not more than 3 %, and the SOC estimation errors of multiple tests are mainly concentrated below 2 %, indicating outstanding estimation precision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ling22发布了新的文献求助10
3秒前
balalal完成签到,获得积分10
3秒前
吴龙发布了新的文献求助10
3秒前
3秒前
zd200572发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
怕孤单的安蕾完成签到,获得积分10
7秒前
7秒前
如常完成签到,获得积分10
8秒前
轻松绮露发布了新的文献求助10
8秒前
Amberwdd发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
10秒前
10秒前
11秒前
starlx0813发布了新的文献求助10
11秒前
11秒前
qqqq发布了新的文献求助10
11秒前
11秒前
11秒前
吴龙完成签到,获得积分10
11秒前
12秒前
今后应助缓慢的皮卡丘采纳,获得10
12秒前
李润春完成签到,获得积分10
13秒前
13秒前
zz完成签到,获得积分20
13秒前
13秒前
丁丁丁完成签到,获得积分10
14秒前
张11发布了新的文献求助10
14秒前
木火灰发布了新的文献求助10
14秒前
Z赵完成签到 ,获得积分10
14秒前
李健应助dmj采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
JamesPei应助冯娇娇采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784255
求助须知:如何正确求助?哪些是违规求助? 5681721
关于积分的说明 15463641
捐赠科研通 4913544
什么是DOI,文献DOI怎么找? 2644711
邀请新用户注册赠送积分活动 1592596
关于科研通互助平台的介绍 1547133