Estimation methods for the state of charge and capacity in various states of health of LiFePO4 batteries

荷电状态 电压 区间(图论) 校准 控制理论(社会学) 计算机科学 统计 工程类 数学 电池(电) 物理 电气工程 功率(物理) 人工智能 组合数学 控制(管理) 量子力学
作者
Zhicheng Zhu,Jiajun Zhu,Wenkai Gao,Yuedong Sun,Changyong Jin,Yuejiu Zheng
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:88: 111381-111381 被引量:8
标识
DOI:10.1016/j.est.2024.111381
摘要

Accurately estimating the capacity and state of charge (SOC) of Li-ion batteries at various aging levels is a crucial function of the Battery Management System (BMS). However, the battery's capacity and open circuit voltage (OCV) change as it ages, which poses challenges to accurately estimating the SOC and capacity of aging batteries. To address this problem, the present paper suggests a capacity iterative loop estimation technique that relies on SOC fusion estimation. The aim is to attain precise SOC and capacity estimation of LiFePO4 aging batteries. Firstly, the RC equivalent circuit model's first-order parameters, along with the OCV-SOC comparison table, the SOC correction interval, and the capacity regression interval for various aging stages are obtained offline. Afterwards, the OCV is identified using the least-squares method with a forgetting factor. The SOC estimation is then performed by combining the correction interval with the open-circuit voltage method and the amperage integration method fusion. Finally, the capacity calibration process for the aged battery is achieved through the iterative loop estimation method, employing the capacity regression interval. The aged battery's capacity calibration is achieved through the use of an iterative cycle estimation approach based on the capacity regression interval. The effectiveness of the method is further verified by experiments, which show that the capacity estimation error of the aged battery is not more than 3 %, and the SOC estimation errors of multiple tests are mainly concentrated below 2 %, indicating outstanding estimation precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Momo完成签到,获得积分10
刚刚
刚刚
开朗满天完成签到,获得积分10
4秒前
4秒前
mint发布了新的文献求助10
4秒前
fanli发布了新的文献求助10
5秒前
啦啦啦发布了新的文献求助20
7秒前
牛牛眉目发布了新的文献求助10
8秒前
英俊的铭应助顺利的白山采纳,获得10
10秒前
Owen应助科研鸟采纳,获得10
10秒前
yyawkx完成签到,获得积分10
11秒前
葡萄完成签到,获得积分10
12秒前
12秒前
12秒前
酷波er应助dawang采纳,获得10
13秒前
Yan完成签到 ,获得积分10
13秒前
14秒前
15秒前
519611521发布了新的文献求助10
16秒前
三个哈卡完成签到,获得积分10
17秒前
BILNQPL发布了新的文献求助10
18秒前
18秒前
老大蒂亚戈完成签到,获得积分10
19秒前
lslslslsllss发布了新的文献求助20
19秒前
20秒前
wpz完成签到,获得积分10
20秒前
21秒前
饱满秋发布了新的文献求助30
21秒前
666应助鱼咬羊采纳,获得10
23秒前
yynfyy发布了新的文献求助10
23秒前
kkkkkk发布了新的文献求助10
24秒前
666应助Farr采纳,获得10
24秒前
隐形曼青应助BILNQPL采纳,获得10
24秒前
一叶知秋完成签到,获得积分10
26秒前
28秒前
sifan完成签到 ,获得积分10
28秒前
帅气白梦完成签到 ,获得积分10
29秒前
29秒前
30秒前
xzk完成签到,获得积分10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159739
捐赠科研通 3246353
什么是DOI,文献DOI怎么找? 1793415
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804374