亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Non-destructive prediction of tea polyphenols during Pu-erh tea fermentation using NIR coupled with chemometrics methods

化学计量学 多酚 化学 发酵 食品科学 色谱法 有机化学 抗氧化剂
作者
Min Liu,Runxian Wang,Delin Shi,Renyong Cao
出处
期刊:Journal of Food Composition and Analysis [Elsevier BV]
卷期号:131: 106247-106247
标识
DOI:10.1016/j.jfca.2024.106247
摘要

The degree of fermentation is crucial for the tea quality. As fermentation duration increases, tea polyphenol content decreases. Exploring total polyphenol content is conducive to achieve the most appropriate fermentation degree. The optimum fermentation of Pu-erh tea liquor was determined in this study by employing the response surface methodology. The response surface experiments were designed with pH, inoculation amount, and solid-liquid ratio as the investigating factors and tea polyphenol degradation rate as the response variable. Under optimized conditions, raw NIR spectra were collected from Pu-erh tea fermented liquor, and standard normal variables transformation (SNV) was applied to eliminate noise interference. Afterwards, three variable screening methods were comparatively applied to select important variables. In comparison, the SNV-competitive adaptive weighted sampling-partial least squire (SNV-CARS-PLS) model achieved the best results by a total of 52 variables were selected from SNV preprocessed NIR spectrum for total polyphenol content in Pu-erh tea liquor, with a correlation coefficient of prediction (Rp = 0.9088), root-mean-square error of prediction (RMSEP = 0.0636 mg/g), and residual prediction deviation (RPD = 2.372). The developed method achieved a limit of detection (LOD) of 0.1908 mg/g and validation outcomes by standard method were satisfactory (p > 0.05) indicating that the developed method could be applied for the determination of tea polyphenols content, thus providing theoretical guidance for the establishment of an intelligent system to monitor the fermentation process of Pu-erh tea in real-time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhhhh完成签到 ,获得积分10
6秒前
focus完成签到 ,获得积分10
10秒前
乐瑶完成签到 ,获得积分10
13秒前
LAN完成签到,获得积分10
17秒前
20秒前
Andrewlabeth完成签到,获得积分10
20秒前
哩哩完成签到,获得积分10
21秒前
Rina完成签到,获得积分10
21秒前
Rina发布了新的文献求助10
24秒前
夜晚不可以没有星星完成签到,获得积分10
26秒前
包容新蕾完成签到 ,获得积分10
27秒前
43秒前
取名真烦完成签到,获得积分10
44秒前
哩哩发布了新的文献求助10
49秒前
大模型应助取名真烦采纳,获得10
49秒前
刘伟完成签到,获得积分10
57秒前
希望天下0贩的0应助其言采纳,获得10
59秒前
烨枫晨曦完成签到,获得积分10
1分钟前
Rina发布了新的文献求助10
1分钟前
Lynny完成签到 ,获得积分0
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
机灵的小云酱完成签到,获得积分10
1分钟前
JamesPei应助Rina采纳,获得10
1分钟前
轻松元绿完成签到 ,获得积分10
1分钟前
1分钟前
彭于晏应助Mr采纳,获得10
1分钟前
Oay发布了新的文献求助10
1分钟前
1分钟前
Mr发布了新的文献求助10
2分钟前
2分钟前
雅典的宠儿完成签到 ,获得积分10
2分钟前
2分钟前
老实新筠发布了新的文献求助10
2分钟前
2分钟前
科研通AI5应助想逃离采纳,获得10
2分钟前
大模型应助老实新筠采纳,获得10
2分钟前
Orange应助一米九六大帅哥采纳,获得10
2分钟前
李爱国应助哩哩采纳,获得10
2分钟前
深情的楷瑞完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4909785
求助须知:如何正确求助?哪些是违规求助? 4185980
关于积分的说明 12998857
捐赠科研通 3953101
什么是DOI,文献DOI怎么找? 2167775
邀请新用户注册赠送积分活动 1186260
关于科研通互助平台的介绍 1093086