亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Non-destructive prediction of tea polyphenols during Pu-erh tea fermentation using NIR coupled with chemometrics methods

化学计量学 多酚 化学 发酵 食品科学 色谱法 有机化学 抗氧化剂
作者
Min Liu,Runxian Wang,Delin Shi,Renyong Cao
出处
期刊:Journal of Food Composition and Analysis [Elsevier BV]
卷期号:131: 106247-106247
标识
DOI:10.1016/j.jfca.2024.106247
摘要

The degree of fermentation is crucial for the tea quality. As fermentation duration increases, tea polyphenol content decreases. Exploring total polyphenol content is conducive to achieve the most appropriate fermentation degree. The optimum fermentation of Pu-erh tea liquor was determined in this study by employing the response surface methodology. The response surface experiments were designed with pH, inoculation amount, and solid-liquid ratio as the investigating factors and tea polyphenol degradation rate as the response variable. Under optimized conditions, raw NIR spectra were collected from Pu-erh tea fermented liquor, and standard normal variables transformation (SNV) was applied to eliminate noise interference. Afterwards, three variable screening methods were comparatively applied to select important variables. In comparison, the SNV-competitive adaptive weighted sampling-partial least squire (SNV-CARS-PLS) model achieved the best results by a total of 52 variables were selected from SNV preprocessed NIR spectrum for total polyphenol content in Pu-erh tea liquor, with a correlation coefficient of prediction (Rp = 0.9088), root-mean-square error of prediction (RMSEP = 0.0636 mg/g), and residual prediction deviation (RPD = 2.372). The developed method achieved a limit of detection (LOD) of 0.1908 mg/g and validation outcomes by standard method were satisfactory (p > 0.05) indicating that the developed method could be applied for the determination of tea polyphenols content, thus providing theoretical guidance for the establishment of an intelligent system to monitor the fermentation process of Pu-erh tea in real-time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
再给我来点抽象的应助Jim采纳,获得10
33秒前
科研通AI5应助榆果子采纳,获得10
54秒前
fufufu123完成签到 ,获得积分10
1分钟前
孙孙应助Jim采纳,获得30
1分钟前
充电宝应助EliotFang采纳,获得10
2分钟前
2分钟前
陈杰发布了新的文献求助10
2分钟前
kuoping完成签到,获得积分0
2分钟前
彭于晏应助科研通管家采纳,获得10
2分钟前
nickel完成签到,获得积分10
3分钟前
4分钟前
EliotFang发布了新的文献求助10
4分钟前
沉沉完成签到 ,获得积分0
4分钟前
4分钟前
4分钟前
Frank发布了新的文献求助10
4分钟前
oleskarabach发布了新的文献求助10
4分钟前
EliotFang完成签到,获得积分10
4分钟前
fsznc完成签到 ,获得积分0
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
oleskarabach发布了新的文献求助10
5分钟前
CipherSage应助科研通管家采纳,获得10
6分钟前
开心完成签到 ,获得积分10
7分钟前
7分钟前
顾矜应助zsc采纳,获得10
7分钟前
榆果子发布了新的文献求助10
7分钟前
榆果子完成签到,获得积分10
7分钟前
我是笨蛋完成签到 ,获得积分10
7分钟前
8分钟前
8分钟前
荆棘鸟发布了新的文献求助10
8分钟前
正传阿飞完成签到,获得积分10
8分钟前
隐形曼青应助荆棘鸟采纳,获得10
8分钟前
荆棘鸟完成签到,获得积分10
8分钟前
8分钟前
Frank完成签到,获得积分10
9分钟前
鲤鱼听荷完成签到 ,获得积分10
10分钟前
10分钟前
tabblk发布了新的文献求助10
10分钟前
赘婿应助科研通管家采纳,获得10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582372
求助须知:如何正确求助?哪些是违规求助? 4000106
关于积分的说明 12382171
捐赠科研通 3675045
什么是DOI,文献DOI怎么找? 2025670
邀请新用户注册赠送积分活动 1059319
科研通“疑难数据库(出版商)”最低求助积分说明 945976