已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Non-destructive prediction of tea polyphenols during Pu-erh tea fermentation using NIR coupled with chemometrics methods

化学计量学 多酚 化学 发酵 食品科学 色谱法 有机化学 抗氧化剂
作者
Min Liu,Runxian Wang,Delin Shi,Renyong Cao
出处
期刊:Journal of Food Composition and Analysis [Elsevier BV]
卷期号:131: 106247-106247
标识
DOI:10.1016/j.jfca.2024.106247
摘要

The degree of fermentation is crucial for the tea quality. As fermentation duration increases, tea polyphenol content decreases. Exploring total polyphenol content is conducive to achieve the most appropriate fermentation degree. The optimum fermentation of Pu-erh tea liquor was determined in this study by employing the response surface methodology. The response surface experiments were designed with pH, inoculation amount, and solid-liquid ratio as the investigating factors and tea polyphenol degradation rate as the response variable. Under optimized conditions, raw NIR spectra were collected from Pu-erh tea fermented liquor, and standard normal variables transformation (SNV) was applied to eliminate noise interference. Afterwards, three variable screening methods were comparatively applied to select important variables. In comparison, the SNV-competitive adaptive weighted sampling-partial least squire (SNV-CARS-PLS) model achieved the best results by a total of 52 variables were selected from SNV preprocessed NIR spectrum for total polyphenol content in Pu-erh tea liquor, with a correlation coefficient of prediction (Rp = 0.9088), root-mean-square error of prediction (RMSEP = 0.0636 mg/g), and residual prediction deviation (RPD = 2.372). The developed method achieved a limit of detection (LOD) of 0.1908 mg/g and validation outcomes by standard method were satisfactory (p > 0.05) indicating that the developed method could be applied for the determination of tea polyphenols content, thus providing theoretical guidance for the establishment of an intelligent system to monitor the fermentation process of Pu-erh tea in real-time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飘逸映波发布了新的文献求助10
4秒前
追寻海雪关注了科研通微信公众号
6秒前
maedehmmh完成签到,获得积分10
10秒前
文艺的初南完成签到 ,获得积分10
12秒前
傻丢完成签到 ,获得积分10
14秒前
18秒前
kiwi驳回了所所应助
20秒前
寒冷的海蓝完成签到,获得积分10
22秒前
追寻海雪发布了新的文献求助10
25秒前
26秒前
27秒前
孙文杰完成签到 ,获得积分10
29秒前
31秒前
魔幻傲霜发布了新的文献求助10
34秒前
激情的元正完成签到 ,获得积分10
35秒前
不筝发布了新的文献求助10
37秒前
38秒前
陌上花开完成签到,获得积分0
44秒前
风趣问雁完成签到 ,获得积分10
45秒前
45秒前
不筝完成签到,获得积分20
45秒前
田様应助AlexanderChen采纳,获得10
45秒前
zhengxu完成签到,获得积分20
47秒前
47秒前
只要平凡发布了新的文献求助10
48秒前
Aman发布了新的文献求助10
49秒前
Hello应助xiangyuan采纳,获得10
51秒前
Miracle_wh完成签到,获得积分10
52秒前
小夭发布了新的文献求助10
53秒前
xpqiu完成签到,获得积分10
54秒前
hankai_zeng完成签到,获得积分10
55秒前
zplease完成签到,获得积分10
59秒前
可爱的函函应助八合一采纳,获得10
1分钟前
vnb完成签到,获得积分20
1分钟前
1分钟前
喝儿何完成签到,获得积分10
1分钟前
1分钟前
八合一发布了新的文献求助10
1分钟前
韩保晨发布了新的文献求助10
1分钟前
hhhi发布了新的文献求助10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994469
求助须知:如何正确求助?哪些是违规求助? 3534869
关于积分的说明 11266676
捐赠科研通 3274686
什么是DOI,文献DOI怎么找? 1806453
邀请新用户注册赠送积分活动 883298
科研通“疑难数据库(出版商)”最低求助积分说明 809749