WOA-BP Based Predicting Daily Production Method of Single Wells in Oilfield

石油工程 生产(经济) 地质学 计算机科学 宏观经济学 经济
作者
Hongtao Hu,Xueying Zhang
标识
DOI:10.1145/3638584.3638616
摘要

The daily production of a single well in an oil field can reflect the changes in oil and water in the reservoir and it is an important basis for formulating single well stimulation measures. However, the factors that affect the daily production of a single well are complex, and there is currently no standard calculation method. In recent years, BP neural networks have been widely used in yield prediction, but they have problems such as slow convergence speed and easy to fall into local optima. In response to the above issues, this paper proposes a backpropagation neural network model WOA-BP based on the whale optimization algorithm. Firstly, the Spearman and Pearson correlation coefficient methods are used to screen feature attributes related to oil production as input parameters of the neural network, with oil production as output parameter; Then, the Whale Optimization Algorithm (WOA) is used to optimize the initial parameters such as learning rate, weight and bias, as well as the number of hidden layer neurons in the BP neural network; Finally, based on the optimized initial network parameters, a single well daily production prediction model is constructed. Train and evaluate the established model using real oilfield data, and compare it with the prediction models of BP, GA-BP, and PSO-BP. The experimental results show that the WOA-BP model has good prediction performance, with a coefficient of determination (R2) of 0.9633 and a mean square error (MSE) of 0.0017. It can effectively predict the daily oil production of a single well and aid with predicting the production of oilfield blocks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Luna_aaa应助yang135采纳,获得10
刚刚
忧郁小刺猬完成签到,获得积分10
刚刚
3秒前
LIBINWANG完成签到,获得积分10
4秒前
5秒前
老虎完成签到,获得积分10
6秒前
苹果夜梦完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
NexusExplorer应助不安冰棍采纳,获得10
9秒前
竹本完成签到 ,获得积分10
10秒前
Dio完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
田様应助MGzsss采纳,获得10
13秒前
13秒前
思源应助你好采纳,获得10
13秒前
13秒前
14秒前
Daiys完成签到,获得积分10
15秒前
蓝天应助彩虹捕手采纳,获得10
16秒前
xiaofeidiao完成签到,获得积分10
16秒前
尔蝶完成签到 ,获得积分10
17秒前
ZZL发布了新的文献求助10
17秒前
搬砖发布了新的文献求助10
18秒前
19秒前
嗯哼完成签到 ,获得积分10
20秒前
Akim应助涯123采纳,获得10
21秒前
21秒前
高贵秋柳发布了新的文献求助10
22秒前
23秒前
英勇的若灵完成签到 ,获得积分10
23秒前
23秒前
专注雁卉发布了新的文献求助10
24秒前
MGzsss发布了新的文献求助10
24秒前
26秒前
薏_发布了新的文献求助10
26秒前
yznfly应助Tail采纳,获得20
26秒前
你好发布了新的文献求助10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633567
求助须知:如何正确求助?哪些是违规求助? 4729249
关于积分的说明 14986268
捐赠科研通 4791473
什么是DOI,文献DOI怎么找? 2558931
邀请新用户注册赠送积分活动 1519330
关于科研通互助平台的介绍 1479617