WOA-BP Based Predicting Daily Production Method of Single Wells in Oilfield

石油工程 生产(经济) 地质学 计算机科学 经济 宏观经济学
作者
Hongtao Hu,Xueying Zhang
标识
DOI:10.1145/3638584.3638616
摘要

The daily production of a single well in an oil field can reflect the changes in oil and water in the reservoir and it is an important basis for formulating single well stimulation measures. However, the factors that affect the daily production of a single well are complex, and there is currently no standard calculation method. In recent years, BP neural networks have been widely used in yield prediction, but they have problems such as slow convergence speed and easy to fall into local optima. In response to the above issues, this paper proposes a backpropagation neural network model WOA-BP based on the whale optimization algorithm. Firstly, the Spearman and Pearson correlation coefficient methods are used to screen feature attributes related to oil production as input parameters of the neural network, with oil production as output parameter; Then, the Whale Optimization Algorithm (WOA) is used to optimize the initial parameters such as learning rate, weight and bias, as well as the number of hidden layer neurons in the BP neural network; Finally, based on the optimized initial network parameters, a single well daily production prediction model is constructed. Train and evaluate the established model using real oilfield data, and compare it with the prediction models of BP, GA-BP, and PSO-BP. The experimental results show that the WOA-BP model has good prediction performance, with a coefficient of determination (R2) of 0.9633 and a mean square error (MSE) of 0.0017. It can effectively predict the daily oil production of a single well and aid with predicting the production of oilfield blocks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕白完成签到,获得积分10
1秒前
英姑应助石浩天采纳,获得10
1秒前
lxt完成签到,获得积分10
2秒前
2秒前
Cecilia发布了新的文献求助10
2秒前
2秒前
Caesar完成签到,获得积分10
2秒前
2秒前
hao完成签到,获得积分10
2秒前
Lynn完成签到,获得积分10
3秒前
飞源完成签到 ,获得积分10
3秒前
3秒前
汉堡包应助薄荷巧克力采纳,获得10
3秒前
22发布了新的文献求助10
3秒前
3秒前
4秒前
zhangyu应助小橙子采纳,获得10
4秒前
wssf756发布了新的文献求助10
4秒前
4秒前
asdasdas发布了新的文献求助10
5秒前
善学以致用应助hh采纳,获得10
5秒前
5秒前
Arvin发布了新的文献求助10
7秒前
7秒前
uuuu完成签到,获得积分10
7秒前
7秒前
qiming完成签到,获得积分10
7秒前
8秒前
8秒前
gezid完成签到 ,获得积分10
8秒前
Crystal发布了新的文献求助10
9秒前
北落发布了新的文献求助10
9秒前
完美世界应助wch采纳,获得10
9秒前
yucuiliu发布了新的文献求助10
9秒前
9秒前
JasonSun完成签到,获得积分10
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
小白完成签到,获得积分10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016497
求助须知:如何正确求助?哪些是违规求助? 3556675
关于积分的说明 11322036
捐赠科研通 3289416
什么是DOI,文献DOI怎么找? 1812458
邀请新用户注册赠送积分活动 888053
科研通“疑难数据库(出版商)”最低求助积分说明 812060