WOA-BP Based Predicting Daily Production Method of Single Wells in Oilfield

石油工程 生产(经济) 地质学 计算机科学 宏观经济学 经济
作者
Hongtao Hu,Xueying Zhang
标识
DOI:10.1145/3638584.3638616
摘要

The daily production of a single well in an oil field can reflect the changes in oil and water in the reservoir and it is an important basis for formulating single well stimulation measures. However, the factors that affect the daily production of a single well are complex, and there is currently no standard calculation method. In recent years, BP neural networks have been widely used in yield prediction, but they have problems such as slow convergence speed and easy to fall into local optima. In response to the above issues, this paper proposes a backpropagation neural network model WOA-BP based on the whale optimization algorithm. Firstly, the Spearman and Pearson correlation coefficient methods are used to screen feature attributes related to oil production as input parameters of the neural network, with oil production as output parameter; Then, the Whale Optimization Algorithm (WOA) is used to optimize the initial parameters such as learning rate, weight and bias, as well as the number of hidden layer neurons in the BP neural network; Finally, based on the optimized initial network parameters, a single well daily production prediction model is constructed. Train and evaluate the established model using real oilfield data, and compare it with the prediction models of BP, GA-BP, and PSO-BP. The experimental results show that the WOA-BP model has good prediction performance, with a coefficient of determination (R2) of 0.9633 and a mean square error (MSE) of 0.0017. It can effectively predict the daily oil production of a single well and aid with predicting the production of oilfield blocks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美好山槐完成签到,获得积分10
刚刚
August完成签到,获得积分10
刚刚
smile完成签到,获得积分10
刚刚
daxiangjiao完成签到,获得积分10
1秒前
1秒前
飞艇发布了新的文献求助10
1秒前
李健的小迷弟应助罗克采纳,获得10
1秒前
111完成签到,获得积分10
1秒前
含蓄的安蕾完成签到,获得积分10
1秒前
舒心无剑完成签到 ,获得积分10
2秒前
2秒前
h1909完成签到,获得积分10
2秒前
左丘尔阳完成签到,获得积分10
2秒前
叁拾肆完成签到,获得积分10
2秒前
3秒前
科研菜狗发布了新的文献求助10
3秒前
负责的母鸡完成签到,获得积分10
3秒前
3秒前
Faceman完成签到,获得积分20
4秒前
cc2064完成签到,获得积分10
4秒前
科研的人完成签到 ,获得积分10
5秒前
寒冷南晴完成签到,获得积分10
5秒前
ceeray23发布了新的文献求助20
5秒前
5秒前
左丘尔阳发布了新的文献求助10
6秒前
闪闪凝梦发布了新的文献求助10
6秒前
黄大仙完成签到,获得积分10
6秒前
浮游应助daxiangjiao采纳,获得10
6秒前
小青椒完成签到,获得积分0
6秒前
喜悦香薇完成签到 ,获得积分10
6秒前
wanci应助吕易巧采纳,获得10
7秒前
7秒前
qiqibaby发布了新的文献求助10
7秒前
8秒前
时冬冬完成签到,获得积分0
8秒前
罗克完成签到,获得积分10
8秒前
冷酷严青发布了新的文献求助10
8秒前
xiaoxiao完成签到,获得积分10
8秒前
zgrmws应助东风采纳,获得10
9秒前
华仔应助1renebaebae采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997