已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

WOA-BP Based Predicting Daily Production Method of Single Wells in Oilfield

石油工程 生产(经济) 地质学 计算机科学 宏观经济学 经济
作者
Hongtao Hu,Xueying Zhang
标识
DOI:10.1145/3638584.3638616
摘要

The daily production of a single well in an oil field can reflect the changes in oil and water in the reservoir and it is an important basis for formulating single well stimulation measures. However, the factors that affect the daily production of a single well are complex, and there is currently no standard calculation method. In recent years, BP neural networks have been widely used in yield prediction, but they have problems such as slow convergence speed and easy to fall into local optima. In response to the above issues, this paper proposes a backpropagation neural network model WOA-BP based on the whale optimization algorithm. Firstly, the Spearman and Pearson correlation coefficient methods are used to screen feature attributes related to oil production as input parameters of the neural network, with oil production as output parameter; Then, the Whale Optimization Algorithm (WOA) is used to optimize the initial parameters such as learning rate, weight and bias, as well as the number of hidden layer neurons in the BP neural network; Finally, based on the optimized initial network parameters, a single well daily production prediction model is constructed. Train and evaluate the established model using real oilfield data, and compare it with the prediction models of BP, GA-BP, and PSO-BP. The experimental results show that the WOA-BP model has good prediction performance, with a coefficient of determination (R2) of 0.9633 and a mean square error (MSE) of 0.0017. It can effectively predict the daily oil production of a single well and aid with predicting the production of oilfield blocks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang完成签到,获得积分10
1秒前
研友_VZG7GZ应助科研小魏采纳,获得10
2秒前
wangdong完成签到,获得积分10
5秒前
5秒前
WAYNE完成签到,获得积分10
6秒前
智智完成签到 ,获得积分10
9秒前
情怀应助上岸采纳,获得10
11秒前
心空完成签到,获得积分10
11秒前
再见不难发布了新的文献求助10
11秒前
O已w时o完成签到 ,获得积分10
12秒前
12秒前
15秒前
️语完成签到 ,获得积分10
17秒前
abc123发布了新的文献求助10
18秒前
19秒前
大个应助优美紫槐采纳,获得10
19秒前
星星发布了新的文献求助10
25秒前
xxhhhhhh发布了新的文献求助10
25秒前
阳阳关注了科研通微信公众号
29秒前
研友_VZG7GZ应助gigadrill采纳,获得10
30秒前
CipherSage应助22采纳,获得10
31秒前
zhenggc完成签到 ,获得积分10
31秒前
32秒前
科研通AI6应助ruru采纳,获得10
35秒前
Breeze发布了新的文献求助10
37秒前
38秒前
JamesPei应助勤劳泽洋采纳,获得10
38秒前
39秒前
大模型应助威武的语蕊采纳,获得10
40秒前
40秒前
赘婿应助wj采纳,获得10
42秒前
42秒前
43秒前
侧耳倾听发布了新的文献求助10
43秒前
闫闫完成签到,获得积分10
44秒前
阳阳发布了新的文献求助10
44秒前
44秒前
44秒前
烟花应助LALA采纳,获得10
45秒前
科研通AI6应助再见不难采纳,获得10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650215
求助须知:如何正确求助?哪些是违规求助? 4780069
关于积分的说明 15051513
捐赠科研通 4809083
什么是DOI,文献DOI怎么找? 2572018
邀请新用户注册赠送积分活动 1528258
关于科研通互助平台的介绍 1487075