WOA-BP Based Predicting Daily Production Method of Single Wells in Oilfield

石油工程 生产(经济) 地质学 计算机科学 经济 宏观经济学
作者
Hongtao Hu,Xueying Zhang
标识
DOI:10.1145/3638584.3638616
摘要

The daily production of a single well in an oil field can reflect the changes in oil and water in the reservoir and it is an important basis for formulating single well stimulation measures. However, the factors that affect the daily production of a single well are complex, and there is currently no standard calculation method. In recent years, BP neural networks have been widely used in yield prediction, but they have problems such as slow convergence speed and easy to fall into local optima. In response to the above issues, this paper proposes a backpropagation neural network model WOA-BP based on the whale optimization algorithm. Firstly, the Spearman and Pearson correlation coefficient methods are used to screen feature attributes related to oil production as input parameters of the neural network, with oil production as output parameter; Then, the Whale Optimization Algorithm (WOA) is used to optimize the initial parameters such as learning rate, weight and bias, as well as the number of hidden layer neurons in the BP neural network; Finally, based on the optimized initial network parameters, a single well daily production prediction model is constructed. Train and evaluate the established model using real oilfield data, and compare it with the prediction models of BP, GA-BP, and PSO-BP. The experimental results show that the WOA-BP model has good prediction performance, with a coefficient of determination (R2) of 0.9633 and a mean square error (MSE) of 0.0017. It can effectively predict the daily oil production of a single well and aid with predicting the production of oilfield blocks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
玄辰应助流光采纳,获得10
1秒前
1秒前
rwj发布了新的文献求助10
1秒前
2秒前
天天快乐应助威海大雪采纳,获得10
2秒前
monica发布了新的文献求助10
2秒前
yale完成签到,获得积分20
3秒前
4秒前
kk发布了新的文献求助10
4秒前
Hello应助123采纳,获得30
5秒前
Calvin发布了新的文献求助10
5秒前
5秒前
任性的白薇完成签到,获得积分10
5秒前
6秒前
Xenia完成签到,获得积分10
6秒前
可爱的函函应助Jieh采纳,获得10
6秒前
yale发布了新的文献求助10
7秒前
Three完成签到,获得积分10
7秒前
CodeCraft应助乔123采纳,获得10
7秒前
个性襄发布了新的文献求助10
7秒前
8秒前
8秒前
无奈凝云完成签到,获得积分10
9秒前
yuan完成签到,获得积分10
10秒前
10秒前
10秒前
黄明霞发布了新的文献求助20
10秒前
科研通AI5应助美好忆南采纳,获得10
11秒前
myduty完成签到 ,获得积分10
11秒前
sw发布了新的文献求助10
11秒前
11秒前
MX应助nbzhan采纳,获得10
12秒前
12345发布了新的文献求助10
12秒前
Owen应助柠檬加冰采纳,获得10
12秒前
12秒前
粗暴的毛豆完成签到,获得积分10
12秒前
Hello应助可爱香槟采纳,获得10
13秒前
个性襄完成签到,获得积分10
13秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842288
求助须知:如何正确求助?哪些是违规求助? 3384399
关于积分的说明 10534504
捐赠科研通 3104830
什么是DOI,文献DOI怎么找? 1709838
邀请新用户注册赠送积分活动 823410
科研通“疑难数据库(出版商)”最低求助积分说明 774050