WOA-BP Based Predicting Daily Production Method of Single Wells in Oilfield

石油工程 生产(经济) 地质学 计算机科学 宏观经济学 经济
作者
Hongtao Hu,Xueying Zhang
标识
DOI:10.1145/3638584.3638616
摘要

The daily production of a single well in an oil field can reflect the changes in oil and water in the reservoir and it is an important basis for formulating single well stimulation measures. However, the factors that affect the daily production of a single well are complex, and there is currently no standard calculation method. In recent years, BP neural networks have been widely used in yield prediction, but they have problems such as slow convergence speed and easy to fall into local optima. In response to the above issues, this paper proposes a backpropagation neural network model WOA-BP based on the whale optimization algorithm. Firstly, the Spearman and Pearson correlation coefficient methods are used to screen feature attributes related to oil production as input parameters of the neural network, with oil production as output parameter; Then, the Whale Optimization Algorithm (WOA) is used to optimize the initial parameters such as learning rate, weight and bias, as well as the number of hidden layer neurons in the BP neural network; Finally, based on the optimized initial network parameters, a single well daily production prediction model is constructed. Train and evaluate the established model using real oilfield data, and compare it with the prediction models of BP, GA-BP, and PSO-BP. The experimental results show that the WOA-BP model has good prediction performance, with a coefficient of determination (R2) of 0.9633 and a mean square error (MSE) of 0.0017. It can effectively predict the daily oil production of a single well and aid with predicting the production of oilfield blocks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Savannah发布了新的文献求助10
刚刚
bkagyin应助岸久舞若衣采纳,获得10
1秒前
chamberlain完成签到 ,获得积分10
1秒前
Yaaaaaa发布了新的文献求助10
1秒前
天天快乐应助tamato采纳,获得10
2秒前
平淡远航完成签到,获得积分10
2秒前
Hi发布了新的文献求助10
2秒前
2秒前
雨陌应助EASA采纳,获得10
2秒前
li发布了新的文献求助10
3秒前
脑洞疼应助卷儿w采纳,获得10
3秒前
sakura发布了新的文献求助10
3秒前
4秒前
Lucas应助爱吃果冻采纳,获得10
5秒前
5秒前
5秒前
Akim应助一路硕博采纳,获得10
5秒前
清风发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
non完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
研友_nVNVVn应助朴实的之云采纳,获得10
6秒前
6秒前
甜甜的满天完成签到,获得积分10
7秒前
xinyu完成签到,获得积分20
8秒前
9秒前
9秒前
9秒前
hudaojiadecaigou完成签到,获得积分10
10秒前
愉快的莹发布了新的文献求助10
10秒前
10秒前
jinger发布了新的文献求助10
10秒前
11秒前
清风完成签到,获得积分10
11秒前
脑洞疼应助EASA采纳,获得10
12秒前
小二郎应助Hi采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718656
求助须知:如何正确求助?哪些是违规求助? 5253667
关于积分的说明 15286658
捐赠科研通 4868722
什么是DOI,文献DOI怎么找? 2614394
邀请新用户注册赠送积分活动 1564266
关于科研通互助平台的介绍 1521785