WOA-BP Based Predicting Daily Production Method of Single Wells in Oilfield

石油工程 生产(经济) 地质学 计算机科学 经济 宏观经济学
作者
Hongtao Hu,Xueying Zhang
标识
DOI:10.1145/3638584.3638616
摘要

The daily production of a single well in an oil field can reflect the changes in oil and water in the reservoir and it is an important basis for formulating single well stimulation measures. However, the factors that affect the daily production of a single well are complex, and there is currently no standard calculation method. In recent years, BP neural networks have been widely used in yield prediction, but they have problems such as slow convergence speed and easy to fall into local optima. In response to the above issues, this paper proposes a backpropagation neural network model WOA-BP based on the whale optimization algorithm. Firstly, the Spearman and Pearson correlation coefficient methods are used to screen feature attributes related to oil production as input parameters of the neural network, with oil production as output parameter; Then, the Whale Optimization Algorithm (WOA) is used to optimize the initial parameters such as learning rate, weight and bias, as well as the number of hidden layer neurons in the BP neural network; Finally, based on the optimized initial network parameters, a single well daily production prediction model is constructed. Train and evaluate the established model using real oilfield data, and compare it with the prediction models of BP, GA-BP, and PSO-BP. The experimental results show that the WOA-BP model has good prediction performance, with a coefficient of determination (R2) of 0.9633 and a mean square error (MSE) of 0.0017. It can effectively predict the daily oil production of a single well and aid with predicting the production of oilfield blocks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粥可温应助Rose采纳,获得10
2秒前
zhongjiaa发布了新的文献求助10
2秒前
Phosphene应助vsvsgo采纳,获得10
3秒前
Emon完成签到,获得积分20
4秒前
4秒前
韭菜发布了新的文献求助10
4秒前
笨笨穆完成签到,获得积分20
4秒前
善学以致用应助纪震宇采纳,获得10
5秒前
李爱国应助科研小牛采纳,获得10
9秒前
hzxy_lyt应助cd采纳,获得10
10秒前
英俊的铭应助海风采纳,获得30
11秒前
与我常在完成签到,获得积分10
14秒前
14秒前
明理小土豆完成签到,获得积分10
14秒前
14秒前
刻苦的小虾米完成签到 ,获得积分10
15秒前
17秒前
韭菜发布了新的文献求助10
18秒前
鲁立辉完成签到,获得积分10
18秒前
纪震宇发布了新的文献求助10
18秒前
小马甲应助甜甜的紫丝采纳,获得10
19秒前
20秒前
cm_1231发布了新的文献求助10
20秒前
思源应助逛该在采纳,获得10
21秒前
1212完成签到,获得积分10
22秒前
淡淡宛完成签到 ,获得积分10
22秒前
23秒前
LiuYinglong完成签到,获得积分20
23秒前
在水一方应助林柠采纳,获得30
23秒前
CS391495876完成签到,获得积分10
24秒前
25秒前
xie完成签到 ,获得积分10
26秒前
领导范儿应助韭菜采纳,获得10
28秒前
29秒前
米兰达完成签到 ,获得积分10
30秒前
花盛完成签到,获得积分10
30秒前
31秒前
天天快乐应助咿呀咿呀采纳,获得10
31秒前
34秒前
研友完成签到,获得积分10
34秒前
高分求助中
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Microscopic Anatomy of Animals 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3344832
求助须知:如何正确求助?哪些是违规求助? 2971679
关于积分的说明 8650440
捐赠科研通 2651923
什么是DOI,文献DOI怎么找? 1452255
科研通“疑难数据库(出版商)”最低求助积分说明 672470
邀请新用户注册赠送积分活动 661978