Deep Learning for Gas Sensing via Infrared Spectroscopy

希特勒 红外光谱学 光谱学 水蒸气 吸收光谱法 化学 吸收(声学) 微量气体 人工智能 计算机科学 材料科学 物理 光学 有机化学 量子力学 复合材料
作者
M. Arshad Zahangir Chowdhury,Matthew A. Oehlschlaeger
出处
期刊:Sensors [MDPI AG]
卷期号:24 (6): 1873-1873
标识
DOI:10.3390/s24061873
摘要

Deep learning methods, a powerful form of artificial intelligence, have been applied in a number of spectroscopy and gas sensing applications. However, the speciation of multi-component gas mixtures from infrared (IR) absorption spectra using deep learning remains to be explored. Here, we propose a one-dimensional deep convolutional neural network gas classification model for the identification of small molecules of interest based on IR absorption spectra in flexible user-defined frequency ranges. The molecules considered include ten that are of interest in the atmosphere or in industrial and environmental processes: water vapor, carbon dioxide, ozone, nitrous oxide, carbon monoxide, methane, nitric oxide, sulfur dioxide, nitrogen dioxide, and ammonia. A simulated dataset of IR absorption spectra for mixtures of these molecules diluted in air was generated and used to train a deep learning model. The model was tested against simulated spectra containing noise and was found to provide speciation predictions with accuracy from 82 to 97%. The internal operation of the model was investigated using class activation maps that illustrate how the model prioritizes spectral information for classification. Finally, the model was demonstrated for the prediction of speciation for two synthetic experimental mixture spectra. The proposed model and the dataset generation strategies are generalized and can be implemented for other gases, different frequency ranges, and spectroscopy types. The multi-component speciation method developed herein is the first application of a convolutional neural network model, trained on HITRAN-based simulations, for spectral identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
future完成签到,获得积分10
刚刚
星城浮轩完成签到 ,获得积分10
刚刚
幽默觅翠完成签到,获得积分10
刚刚
Mmm完成签到,获得积分10
刚刚
zheng華发布了新的文献求助10
1秒前
傻傻的马里奥完成签到 ,获得积分10
1秒前
任生平完成签到,获得积分10
2秒前
田様应助霸气咖啡豆采纳,获得30
2秒前
2秒前
3秒前
冷酷三德完成签到 ,获得积分10
3秒前
3秒前
NexusExplorer应助Yang采纳,获得10
3秒前
4秒前
石头完成签到,获得积分10
4秒前
4秒前
xzh完成签到,获得积分10
4秒前
求助哥完成签到,获得积分10
4秒前
wanci应助colossus0257采纳,获得20
4秒前
黄叶飞完成签到,获得积分10
5秒前
香蕉觅云应助GCY采纳,获得10
5秒前
ffw1完成签到,获得积分10
5秒前
春风完成签到,获得积分10
5秒前
6秒前
金金完成签到,获得积分10
6秒前
ccs完成签到,获得积分10
6秒前
小张z完成签到,获得积分10
6秒前
幽兰完成签到,获得积分20
6秒前
俭朴舞仙完成签到 ,获得积分10
6秒前
酷酷的乐菱完成签到,获得积分10
7秒前
LongY完成签到,获得积分10
8秒前
pengyuyan发布了新的文献求助10
8秒前
yy发布了新的文献求助10
8秒前
Honahlee发布了新的文献求助10
8秒前
脑洞疼应助Nancy采纳,获得10
8秒前
无情的匪完成签到 ,获得积分10
9秒前
weiyayayayayaya完成签到,获得积分10
9秒前
说好不吃肥肉的完成签到,获得积分10
9秒前
曾建完成签到 ,获得积分10
9秒前
LIKO完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5269562
求助须知:如何正确求助?哪些是违规求助? 4427995
关于积分的说明 13781921
捐赠科研通 4305390
什么是DOI,文献DOI怎么找? 2362762
邀请新用户注册赠送积分活动 1358427
关于科研通互助平台的介绍 1321122