Deep Learning for Gas Sensing via Infrared Spectroscopy

希特勒 红外光谱学 光谱学 水蒸气 吸收光谱法 化学 吸收(声学) 微量气体 人工智能 计算机科学 材料科学 物理 光学 有机化学 量子力学 复合材料
作者
M. Arshad Zahangir Chowdhury,Matthew A. Oehlschlaeger
出处
期刊:Sensors [MDPI AG]
卷期号:24 (6): 1873-1873
标识
DOI:10.3390/s24061873
摘要

Deep learning methods, a powerful form of artificial intelligence, have been applied in a number of spectroscopy and gas sensing applications. However, the speciation of multi-component gas mixtures from infrared (IR) absorption spectra using deep learning remains to be explored. Here, we propose a one-dimensional deep convolutional neural network gas classification model for the identification of small molecules of interest based on IR absorption spectra in flexible user-defined frequency ranges. The molecules considered include ten that are of interest in the atmosphere or in industrial and environmental processes: water vapor, carbon dioxide, ozone, nitrous oxide, carbon monoxide, methane, nitric oxide, sulfur dioxide, nitrogen dioxide, and ammonia. A simulated dataset of IR absorption spectra for mixtures of these molecules diluted in air was generated and used to train a deep learning model. The model was tested against simulated spectra containing noise and was found to provide speciation predictions with accuracy from 82 to 97%. The internal operation of the model was investigated using class activation maps that illustrate how the model prioritizes spectral information for classification. Finally, the model was demonstrated for the prediction of speciation for two synthetic experimental mixture spectra. The proposed model and the dataset generation strategies are generalized and can be implemented for other gases, different frequency ranges, and spectroscopy types. The multi-component speciation method developed herein is the first application of a convolutional neural network model, trained on HITRAN-based simulations, for spectral identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
学术小白完成签到,获得积分10
刚刚
chixueqi完成签到,获得积分10
1秒前
1秒前
Jasper应助背后的冷卉采纳,获得30
2秒前
深情安青应助范兆飞采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
even发布了新的文献求助10
3秒前
3秒前
小众完成签到,获得积分10
3秒前
小李完成签到,获得积分10
3秒前
飞槐发布了新的文献求助10
4秒前
小小雪发布了新的文献求助10
4秒前
4秒前
彭于晏应助主手的麻衣采纳,获得10
5秒前
CodeCraft应助喜悦绿旋采纳,获得10
5秒前
chixueqi发布了新的文献求助10
5秒前
kulo发布了新的文献求助10
5秒前
SciGPT应助ymt采纳,获得10
6秒前
skyangar发布了新的文献求助10
6秒前
可爱的函函应助福路采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
默默的芙完成签到,获得积分10
7秒前
石头发布了新的文献求助10
7秒前
所所应助lmy采纳,获得10
7秒前
开朗冬灵完成签到 ,获得积分20
8秒前
宇月幸成发布了新的文献求助10
8秒前
昼夜本色发布了新的文献求助10
8秒前
majingwei发布了新的文献求助10
8秒前
8秒前
9秒前
xixi发布了新的文献求助10
10秒前
DouBo完成签到,获得积分10
10秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719182
求助须知:如何正确求助?哪些是违规求助? 5255402
关于积分的说明 15287996
捐赠科研通 4869073
什么是DOI,文献DOI怎么找? 2614641
邀请新用户注册赠送积分活动 1564561
关于科研通互助平台的介绍 1521851