Deep Learning for Gas Sensing via Infrared Spectroscopy

希特勒 红外光谱学 光谱学 水蒸气 吸收光谱法 化学 吸收(声学) 微量气体 人工智能 计算机科学 材料科学 物理 光学 有机化学 量子力学 复合材料
作者
M. Arshad Zahangir Chowdhury,Matthew A. Oehlschlaeger
出处
期刊:Sensors [MDPI AG]
卷期号:24 (6): 1873-1873
标识
DOI:10.3390/s24061873
摘要

Deep learning methods, a powerful form of artificial intelligence, have been applied in a number of spectroscopy and gas sensing applications. However, the speciation of multi-component gas mixtures from infrared (IR) absorption spectra using deep learning remains to be explored. Here, we propose a one-dimensional deep convolutional neural network gas classification model for the identification of small molecules of interest based on IR absorption spectra in flexible user-defined frequency ranges. The molecules considered include ten that are of interest in the atmosphere or in industrial and environmental processes: water vapor, carbon dioxide, ozone, nitrous oxide, carbon monoxide, methane, nitric oxide, sulfur dioxide, nitrogen dioxide, and ammonia. A simulated dataset of IR absorption spectra for mixtures of these molecules diluted in air was generated and used to train a deep learning model. The model was tested against simulated spectra containing noise and was found to provide speciation predictions with accuracy from 82 to 97%. The internal operation of the model was investigated using class activation maps that illustrate how the model prioritizes spectral information for classification. Finally, the model was demonstrated for the prediction of speciation for two synthetic experimental mixture spectra. The proposed model and the dataset generation strategies are generalized and can be implemented for other gases, different frequency ranges, and spectroscopy types. The multi-component speciation method developed herein is the first application of a convolutional neural network model, trained on HITRAN-based simulations, for spectral identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
远山完成签到 ,获得积分10
2秒前
lucky完成签到,获得积分10
3秒前
4秒前
xiaojiahuo完成签到,获得积分10
4秒前
安的沛白完成签到,获得积分10
4秒前
5秒前
轩天发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
李爱国应助bonnie采纳,获得10
5秒前
6秒前
天天文献我爱看完成签到,获得积分10
6秒前
李健应助夏小胖采纳,获得10
6秒前
6秒前
reegdsgsfd发布了新的文献求助10
6秒前
绝不延毕完成签到 ,获得积分10
6秒前
Jane发布了新的文献求助10
7秒前
xu给irie的求助进行了留言
7秒前
7秒前
Owen应助阳佟若剑采纳,获得10
7秒前
英姑应助韩小花采纳,获得10
8秒前
WWX完成签到,获得积分10
8秒前
9秒前
9秒前
852应助xiuuu采纳,获得10
10秒前
仙鹤草完成签到,获得积分20
10秒前
鲤跃发布了新的文献求助10
11秒前
11秒前
丘比特应助sunliyan采纳,获得10
12秒前
zzdd发布了新的文献求助10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
12秒前
和谐青柏应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
niNe3YUE应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5631998
求助须知:如何正确求助?哪些是违规求助? 4726120
关于积分的说明 14980908
捐赠科研通 4790001
什么是DOI,文献DOI怎么找? 2558096
邀请新用户注册赠送积分活动 1518566
关于科研通互助平台的介绍 1479034