Deep Learning for Gas Sensing via Infrared Spectroscopy

希特勒 红外光谱学 光谱学 水蒸气 吸收光谱法 化学 吸收(声学) 微量气体 人工智能 计算机科学 材料科学 物理 光学 有机化学 量子力学 复合材料
作者
M. Arshad Zahangir Chowdhury,Matthew A. Oehlschlaeger
出处
期刊:Sensors [MDPI AG]
卷期号:24 (6): 1873-1873
标识
DOI:10.3390/s24061873
摘要

Deep learning methods, a powerful form of artificial intelligence, have been applied in a number of spectroscopy and gas sensing applications. However, the speciation of multi-component gas mixtures from infrared (IR) absorption spectra using deep learning remains to be explored. Here, we propose a one-dimensional deep convolutional neural network gas classification model for the identification of small molecules of interest based on IR absorption spectra in flexible user-defined frequency ranges. The molecules considered include ten that are of interest in the atmosphere or in industrial and environmental processes: water vapor, carbon dioxide, ozone, nitrous oxide, carbon monoxide, methane, nitric oxide, sulfur dioxide, nitrogen dioxide, and ammonia. A simulated dataset of IR absorption spectra for mixtures of these molecules diluted in air was generated and used to train a deep learning model. The model was tested against simulated spectra containing noise and was found to provide speciation predictions with accuracy from 82 to 97%. The internal operation of the model was investigated using class activation maps that illustrate how the model prioritizes spectral information for classification. Finally, the model was demonstrated for the prediction of speciation for two synthetic experimental mixture spectra. The proposed model and the dataset generation strategies are generalized and can be implemented for other gases, different frequency ranges, and spectroscopy types. The multi-component speciation method developed herein is the first application of a convolutional neural network model, trained on HITRAN-based simulations, for spectral identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观的穆发布了新的文献求助10
1秒前
Pavel完成签到,获得积分10
2秒前
3秒前
领导范儿应助徐徐采纳,获得10
4秒前
外向的凝阳完成签到 ,获得积分10
4秒前
无极微光应助丶Dawn采纳,获得20
4秒前
122发布了新的文献求助10
5秒前
wait完成签到,获得积分10
11秒前
栋栋完成签到 ,获得积分10
12秒前
新晋老板完成签到,获得积分10
13秒前
加菲丰丰给chenxi的求助进行了留言
13秒前
隐形曼青应助博博采纳,获得10
14秒前
16秒前
122完成签到,获得积分20
16秒前
Lxx完成签到,获得积分10
17秒前
17秒前
CipherSage应助逝水无痕采纳,获得10
17秒前
YifanWang应助Ttimer采纳,获得10
18秒前
FashionBoy应助fedehe采纳,获得10
19秒前
guo发布了新的文献求助10
20秒前
Zyc发布了新的文献求助10
21秒前
21秒前
22秒前
23秒前
小二郎应助依紫采纳,获得10
23秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
newnew发布了新的文献求助10
26秒前
27秒前
27秒前
27秒前
29秒前
ming发布了新的文献求助10
30秒前
冰与火发布了新的文献求助10
30秒前
30秒前
SUNINE完成签到,获得积分10
31秒前
ljw199606完成签到,获得积分10
31秒前
xzy998应助加菲丰丰采纳,获得30
33秒前
尊敬的发布了新的文献求助10
33秒前
H_HP发布了新的文献求助30
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742261
求助须知:如何正确求助?哪些是违规求助? 5407364
关于积分的说明 15344547
捐赠科研通 4883713
什么是DOI,文献DOI怎么找? 2625203
邀请新用户注册赠送积分活动 1574062
关于科研通互助平台的介绍 1531044