Deep Learning for Gas Sensing via Infrared Spectroscopy

希特勒 红外光谱学 光谱学 水蒸气 吸收光谱法 化学 吸收(声学) 微量气体 人工智能 计算机科学 材料科学 物理 光学 有机化学 量子力学 复合材料
作者
M. Arshad Zahangir Chowdhury,Matthew A. Oehlschlaeger
出处
期刊:Sensors [MDPI AG]
卷期号:24 (6): 1873-1873
标识
DOI:10.3390/s24061873
摘要

Deep learning methods, a powerful form of artificial intelligence, have been applied in a number of spectroscopy and gas sensing applications. However, the speciation of multi-component gas mixtures from infrared (IR) absorption spectra using deep learning remains to be explored. Here, we propose a one-dimensional deep convolutional neural network gas classification model for the identification of small molecules of interest based on IR absorption spectra in flexible user-defined frequency ranges. The molecules considered include ten that are of interest in the atmosphere or in industrial and environmental processes: water vapor, carbon dioxide, ozone, nitrous oxide, carbon monoxide, methane, nitric oxide, sulfur dioxide, nitrogen dioxide, and ammonia. A simulated dataset of IR absorption spectra for mixtures of these molecules diluted in air was generated and used to train a deep learning model. The model was tested against simulated spectra containing noise and was found to provide speciation predictions with accuracy from 82 to 97%. The internal operation of the model was investigated using class activation maps that illustrate how the model prioritizes spectral information for classification. Finally, the model was demonstrated for the prediction of speciation for two synthetic experimental mixture spectra. The proposed model and the dataset generation strategies are generalized and can be implemented for other gases, different frequency ranges, and spectroscopy types. The multi-component speciation method developed herein is the first application of a convolutional neural network model, trained on HITRAN-based simulations, for spectral identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
26937635完成签到,获得积分10
刚刚
DPH完成签到 ,获得积分10
1秒前
张雯雯发布了新的文献求助10
1秒前
缙云山2020发布了新的文献求助10
1秒前
1秒前
好好完成签到,获得积分10
1秒前
所所应助追梦小帅采纳,获得10
1秒前
精明高丽关注了科研通微信公众号
1秒前
麦麦发布了新的文献求助30
2秒前
2秒前
3秒前
3秒前
天空之城完成签到,获得积分10
3秒前
3秒前
nuli完成签到,获得积分10
3秒前
3秒前
汉堡包应助流光采纳,获得10
4秒前
cy完成签到,获得积分10
4秒前
4秒前
夹心酱的飞踢完成签到,获得积分10
4秒前
4秒前
善学以致用应助每㐬山风采纳,获得10
5秒前
5秒前
5秒前
唛仔完成签到 ,获得积分10
6秒前
SciGPT应助Japrin采纳,获得10
6秒前
longer完成签到 ,获得积分10
6秒前
26937635发布了新的文献求助10
6秒前
Akim应助呆萌安双采纳,获得10
6秒前
6秒前
张1完成签到,获得积分10
6秒前
Wyan完成签到,获得积分10
7秒前
阔达的定帮完成签到,获得积分20
7秒前
7秒前
7秒前
睡醒了发布了新的文献求助10
8秒前
8秒前
宋礼关注了科研通微信公众号
8秒前
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853