Deep Learning for Gas Sensing via Infrared Spectroscopy

希特勒 红外光谱学 光谱学 水蒸气 吸收光谱法 化学 吸收(声学) 微量气体 人工智能 计算机科学 材料科学 物理 光学 有机化学 量子力学 复合材料
作者
M. Arshad Zahangir Chowdhury,Matthew A. Oehlschlaeger
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (6): 1873-1873
标识
DOI:10.3390/s24061873
摘要

Deep learning methods, a powerful form of artificial intelligence, have been applied in a number of spectroscopy and gas sensing applications. However, the speciation of multi-component gas mixtures from infrared (IR) absorption spectra using deep learning remains to be explored. Here, we propose a one-dimensional deep convolutional neural network gas classification model for the identification of small molecules of interest based on IR absorption spectra in flexible user-defined frequency ranges. The molecules considered include ten that are of interest in the atmosphere or in industrial and environmental processes: water vapor, carbon dioxide, ozone, nitrous oxide, carbon monoxide, methane, nitric oxide, sulfur dioxide, nitrogen dioxide, and ammonia. A simulated dataset of IR absorption spectra for mixtures of these molecules diluted in air was generated and used to train a deep learning model. The model was tested against simulated spectra containing noise and was found to provide speciation predictions with accuracy from 82 to 97%. The internal operation of the model was investigated using class activation maps that illustrate how the model prioritizes spectral information for classification. Finally, the model was demonstrated for the prediction of speciation for two synthetic experimental mixture spectra. The proposed model and the dataset generation strategies are generalized and can be implemented for other gases, different frequency ranges, and spectroscopy types. The multi-component speciation method developed herein is the first application of a convolutional neural network model, trained on HITRAN-based simulations, for spectral identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助随风采纳,获得10
刚刚
我是老大应助流光采纳,获得10
1秒前
anton发布了新的文献求助10
1秒前
大胆的太清完成签到,获得积分20
1秒前
快到碗里来完成签到,获得积分10
2秒前
[刘小婷]发布了新的文献求助30
2秒前
芯子完成签到 ,获得积分10
2秒前
2秒前
wwx完成签到,获得积分10
3秒前
完美世界应助妩媚的舞仙采纳,获得10
3秒前
3秒前
斯文败类应助Ich采纳,获得10
4秒前
小冯发布了新的文献求助10
4秒前
LaFee完成签到,获得积分10
5秒前
花花发布了新的文献求助10
5秒前
CipherSage应助BingHe采纳,获得10
5秒前
pearl发布了新的文献求助10
5秒前
只要平凡完成签到,获得积分10
6秒前
北过居庸完成签到,获得积分10
6秒前
7秒前
我是老大应助坚强百褶裙采纳,获得10
7秒前
7秒前
7秒前
8秒前
blablawindy发布了新的文献求助10
8秒前
8秒前
浮游应助mumumuzzz采纳,获得10
8秒前
张昭蓉完成签到,获得积分10
8秒前
9秒前
LeeWX完成签到,获得积分20
9秒前
10秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
奋斗的若云完成签到,获得积分10
12秒前
12秒前
anton完成签到,获得积分10
12秒前
单纯的又菱完成签到,获得积分10
12秒前
12秒前
小脑袋发布了新的文献求助10
12秒前
共享精神应助鲜艳的手链采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576795
求助须知:如何正确求助?哪些是违规求助? 3995951
关于积分的说明 12370915
捐赠科研通 3670012
什么是DOI,文献DOI怎么找? 2022527
邀请新用户注册赠送积分活动 1056628
科研通“疑难数据库(出版商)”最低求助积分说明 943794