Deep Learning for Gas Sensing via Infrared Spectroscopy

希特勒 红外光谱学 光谱学 水蒸气 吸收光谱法 化学 吸收(声学) 微量气体 人工智能 计算机科学 材料科学 物理 光学 有机化学 量子力学 复合材料
作者
M. Arshad Zahangir Chowdhury,Matthew A. Oehlschlaeger
出处
期刊:Sensors [MDPI AG]
卷期号:24 (6): 1873-1873
标识
DOI:10.3390/s24061873
摘要

Deep learning methods, a powerful form of artificial intelligence, have been applied in a number of spectroscopy and gas sensing applications. However, the speciation of multi-component gas mixtures from infrared (IR) absorption spectra using deep learning remains to be explored. Here, we propose a one-dimensional deep convolutional neural network gas classification model for the identification of small molecules of interest based on IR absorption spectra in flexible user-defined frequency ranges. The molecules considered include ten that are of interest in the atmosphere or in industrial and environmental processes: water vapor, carbon dioxide, ozone, nitrous oxide, carbon monoxide, methane, nitric oxide, sulfur dioxide, nitrogen dioxide, and ammonia. A simulated dataset of IR absorption spectra for mixtures of these molecules diluted in air was generated and used to train a deep learning model. The model was tested against simulated spectra containing noise and was found to provide speciation predictions with accuracy from 82 to 97%. The internal operation of the model was investigated using class activation maps that illustrate how the model prioritizes spectral information for classification. Finally, the model was demonstrated for the prediction of speciation for two synthetic experimental mixture spectra. The proposed model and the dataset generation strategies are generalized and can be implemented for other gases, different frequency ranges, and spectroscopy types. The multi-component speciation method developed herein is the first application of a convolutional neural network model, trained on HITRAN-based simulations, for spectral identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Akim应助werui采纳,获得10
刚刚
刚刚
刚刚
1秒前
1秒前
1秒前
汪汪的小可爱完成签到,获得积分10
1秒前
1秒前
深情安青应助月魂采纳,获得10
1秒前
1秒前
2秒前
lxz完成签到,获得积分20
2秒前
2秒前
1111111发布了新的文献求助10
2秒前
摇粒绒完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
111完成签到,获得积分10
3秒前
4秒前
刘明发布了新的文献求助10
4秒前
Gonna发布了新的文献求助10
4秒前
Iva发布了新的文献求助10
4秒前
花坂结衣完成签到,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
123发布了新的文献求助10
5秒前
5秒前
6秒前
MRJJJJ完成签到,获得积分10
6秒前
7秒前
7秒前
拉不不发布了新的文献求助10
7秒前
7秒前
7秒前
孙非发布了新的文献求助10
8秒前
李健应助Gonna采纳,获得10
8秒前
orixero应助kiwi采纳,获得10
9秒前
火山蜗牛发布了新的文献求助10
9秒前
慕青应助整齐的小鸽子采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727674
求助须知:如何正确求助?哪些是违规求助? 5309608
关于积分的说明 15311894
捐赠科研通 4875130
什么是DOI,文献DOI怎么找? 2618553
邀请新用户注册赠送积分活动 1568241
关于科研通互助平台的介绍 1524919