Constraining Between-Event Variability of Kinematic Rupture Scenarios by Empirical Ground-Motion Model: A Case Study in Central Italy

运动学 地质学 地震动 事件(粒子物理) 地震学 大地测量学 物理 经典力学 量子力学
作者
František Čejka,Sara Sgobba,Francesca Pacor,Chiara Felicetta,Ľubica Valentová,František Gallovič
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society]
被引量:1
标识
DOI:10.1785/0120230251
摘要

ABSTRACT The region of central Italy is well known for its moderate-to-large earthquakes. Events such as 2016 Mw 6.2 Amatrice, generated in the shallow extensional tectonic regime, motivate numerical simulations to gain insights into source-related ground-motion complexities. We utilize a hybrid integral–composite kinematic rupture model by Gallovič and Brokešová (2007) to predict ground motions for other hypothetical Amatrice fault rupture scenarios (scenario events). The synthetic seismograms are computed in 1D crustal velocity models, including region-specific 1D profiles for selected stations up to 10 Hz. We create more than ten thousand rupture scenarios by varying source parameters. The resulting distributions of synthetic spectral accelerations at periods 0.2–2 s agree with the empirical nonergodic ground-motion model of Sgobba et al. (2021) for central Italy in terms of the mean and total variability. However, statistical mixed-effect analysis of the residuals indicates that the between-event variability of the scenarios exceeds the empirical one significantly. We quantify the role of source model parameters in the modeling and demonstrate the pivotal role of the so-called stress parameter that controls high-frequency radiation. We propose restricting the scenario variability to keep the between-event variability within the empirical value. The presented validation of the scenario variability can be generally utilized in scenario modeling for more realistic physics-based seismic hazard assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
不安太阳完成签到,获得积分10
1秒前
t_suo完成签到,获得积分10
1秒前
bioinforiver完成签到,获得积分10
1秒前
乐观跳跳糖完成签到,获得积分10
1秒前
1秒前
WxChen发布了新的文献求助10
2秒前
2秒前
酷炫的香魔完成签到,获得积分10
2秒前
2秒前
2秒前
NexusExplorer应助无奈满天采纳,获得10
2秒前
qwt_hello完成签到,获得积分10
2秒前
2秒前
海涛完成签到,获得积分10
3秒前
星星发布了新的文献求助10
4秒前
qq完成签到,获得积分10
4秒前
4秒前
4秒前
中央戏精学院完成签到,获得积分10
4秒前
寒冷依秋完成签到,获得积分10
4秒前
彭于晏应助jogrgr采纳,获得10
4秒前
思源应助momo采纳,获得10
5秒前
guozi应助yi采纳,获得10
5秒前
科研通AI2S应助鲤鱼凛采纳,获得10
5秒前
5秒前
kumarr发布了新的文献求助10
5秒前
5秒前
时尚语梦发布了新的文献求助10
5秒前
苹果酸奶完成签到,获得积分10
6秒前
标致小伙发布了新的文献求助10
7秒前
7秒前
7秒前
科研民工发布了新的文献求助10
7秒前
Owen应助sun采纳,获得10
7秒前
handsomecat发布了新的文献求助10
7秒前
乐乐关注了科研通微信公众号
7秒前
7秒前
Kriemhild完成签到,获得积分10
8秒前
dz完成签到,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759