Finite Linear Representation of Nonlinear Structural Dynamics Using Phase Space Embedding Coordinate

代表(政治) 嵌入 非线性系统 动力学(音乐) 空格(标点符号) 相(物质) 相空间 数学分析 数学 计算机科学 物理 人工智能 声学 量子力学 政治 政治学 法学 操作系统
作者
Zhen Peng,Jun Li,Hong Hao
出处
期刊:Journal of Engineering Mechanics-asce [American Society of Civil Engineers]
卷期号:150 (5)
标识
DOI:10.1061/jenmdt.emeng-7349
摘要

Modeling of structural nonlinear dynamic behavior is a central challenge in civil and mechanical engineering communities. The phase space embedding of response time series has been demonstrated to be an efficient coordinate basis for data-driven approximation of the modern Koopman operator, which can fully capture the global evolution of nonlinear dynamics by a linear representation. This study demonstrates that linear and nonlinear structural dynamic vibrations can be represented by a universal forced linear model in a finite dimension space projected by time-delay coordinates. Compared with the existing methods, the proposed approach improves the performance of finite linear representation of nonlinear structural dynamics on two essential issues including the robustness to measurement noise and applicability to multidegree-of-freedom (MDOF) systems. For linear structures, the dynamic mode shapes and the corresponding natural frequencies can be accurately identified by using the time-delay dynamic mode decomposition (DMD) algorithm with acceleration response data experimentally measured from an 8-story shear-type linear steel frame. Modal parameters extracted from the time-delay DMD matched well with those identified from traditional modal identification methods, such as frequency domain decomposition (FDD) and complex mode indicator function (CMIF). In addition, numerical and experimental studies on nonlinear structures are conducted to demonstrate that the finite-dimensional DMD based on the discrete Hankel singular value decomposition (SVD) coordinate is highly symmetrically structured, and is able to accurately obtain a linear representation of structural nonlinear vibration. The resulting linearized data-driven equation-free model can be used to accurately predict the responses of nonlinear systems with limited training data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzc发布了新的文献求助30
2秒前
Jia完成签到,获得积分10
3秒前
逃之姚姚发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
希望天下0贩的0应助燕燕采纳,获得10
4秒前
猫猫侠发布了新的文献求助10
4秒前
燕子完成签到,获得积分10
4秒前
5秒前
5秒前
完美世界应助Liu采纳,获得10
6秒前
饱满沛儿发布了新的文献求助10
6秒前
纯真含灵完成签到,获得积分10
8秒前
无情向薇应助龚幻梦采纳,获得10
9秒前
田様应助微笑的小刺猬采纳,获得10
9秒前
盛清让发布了新的文献求助10
10秒前
jeff发布了新的文献求助10
11秒前
宁空完成签到,获得积分20
12秒前
13秒前
wa完成签到,获得积分10
15秒前
jeff完成签到,获得积分10
15秒前
123123123发布了新的文献求助10
16秒前
无花果应助lxy采纳,获得10
17秒前
19秒前
段国梁发布了新的文献求助10
19秒前
21秒前
徐小哼发布了新的文献求助10
23秒前
hjhhje发布了新的文献求助10
24秒前
24秒前
iRan完成签到,获得积分10
25秒前
科目三应助闪闪的发夹采纳,获得10
25秒前
沐沧澜完成签到 ,获得积分10
26秒前
星辰大海应助zzzz采纳,获得10
29秒前
贾克斯发布了新的文献求助10
29秒前
8R60d8应助沐颜采纳,获得10
30秒前
猫猫侠完成签到,获得积分10
32秒前
32秒前
33秒前
34秒前
叶123发布了新的文献求助10
34秒前
猪猪hero应助a11447采纳,获得10
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959677
求助须知:如何正确求助?哪些是违规求助? 3505910
关于积分的说明 11126825
捐赠科研通 3237865
什么是DOI,文献DOI怎么找? 1789389
邀请新用户注册赠送积分活动 871691
科研通“疑难数据库(出版商)”最低求助积分说明 802963