亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FedGCR: Achieving Performance and Fairness for Federated Learning with Distinct Client Types via Group Customization and Reweighting

个性化 计算机科学 群(周期表) 万维网 化学 有机化学
作者
Shu‐Ling Cheng,Chin-Yuan Yeh,Ting‐An Chen,Eliana Pastor,Ming-Syan Chen⋆
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (10): 11498-11506
标识
DOI:10.1609/aaai.v38i10.29031
摘要

To achieve better performance and greater fairness in Federated Learning (FL), much of the existing research has centered on individual clients, using domain adaptation techniques and redesigned aggregation schemes to counteract client data heterogeneity. However, an overlooked scenario exists where clients belong to distinctive groups, or, client types, in which groups of clients share similar characteristics such as device specifications or data patterns. Despite being common in group collaborations, this scenario has been overlooked in previous research, potentially leading to performance degradation and systemic biases against certain client types. To bridge this gap, we introduce Federated learning with Group Customization and Reweighting (FedGCR). FedGCR enhances both performance and fairness for FL with Distinct Client Types, consisting of a Federated Group Customization (FedGC) model to provide customization via a novel prompt tuning technique to mitigate the data disparity across different client-types, and a Federated Group Reweighting (FedGR) aggregation scheme to ensure uniform and unbiased performances between clients and between client types by a novel reweighting approach. Extensive experiment comparisons with prior FL methods in domain adaptation and fairness demonstrate the superiority of FedGCR in all metrics, including the overall accuracy and performance uniformity in both the group and the individual level. FedGCR achieves 82.74% accuracy and 12.26(↓) in performance uniformity on the Digit-Five dataset and 81.88% and 14.88%(↓) on DomainNet with a domain imbalance factor of 10, which significantly outperforms the state-of-the-art. Code is available at https://github.com/celinezheng/fedgcr.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怪僻完成签到,获得积分10
8秒前
苏yb完成签到 ,获得积分10
23秒前
拉长的迎曼完成签到 ,获得积分10
41秒前
浮游漂漂完成签到 ,获得积分10
47秒前
重庆森林完成签到,获得积分10
1分钟前
英俊的铭应助善逸采纳,获得10
1分钟前
1分钟前
曾浩完成签到 ,获得积分10
1分钟前
1分钟前
田様应助supermaltose采纳,获得10
2分钟前
2分钟前
2分钟前
supermaltose发布了新的文献求助10
2分钟前
dida完成签到,获得积分10
2分钟前
supermaltose完成签到,获得积分10
2分钟前
3分钟前
3分钟前
加减乘除完成签到 ,获得积分10
3分钟前
善逸发布了新的文献求助10
3分钟前
简单的八宝粥应助MAOMAO采纳,获得30
3分钟前
3分钟前
NexusExplorer应助科研通管家采纳,获得10
3分钟前
NexusExplorer应助科研通管家采纳,获得10
3分钟前
笑点低完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
凶狗睡大石完成签到,获得积分10
3分钟前
4分钟前
清晨仪仪完成签到 ,获得积分10
4分钟前
77发布了新的文献求助10
4分钟前
无花果应助Decline采纳,获得10
4分钟前
4分钟前
欢喜的捕完成签到,获得积分10
4分钟前
4分钟前
5分钟前
Decline发布了新的文献求助10
5分钟前
5分钟前
Decline完成签到 ,获得积分10
5分钟前
甜甜纸飞机完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870761
求助须知:如何正确求助?哪些是违规求助? 6467024
关于积分的说明 15664966
捐赠科研通 4986990
什么是DOI,文献DOI怎么找? 2689094
邀请新用户注册赠送积分活动 1631443
关于科研通互助平台的介绍 1589503