FedGCR: Achieving Performance and Fairness for Federated Learning with Distinct Client Types via Group Customization and Reweighting

个性化 计算机科学 群(周期表) 万维网 化学 有机化学
作者
Shu‐Ling Cheng,Chin-Yuan Yeh,Ting‐An Chen,Eliana Pastor,Ming-Syan Chen⋆
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (10): 11498-11506
标识
DOI:10.1609/aaai.v38i10.29031
摘要

To achieve better performance and greater fairness in Federated Learning (FL), much of the existing research has centered on individual clients, using domain adaptation techniques and redesigned aggregation schemes to counteract client data heterogeneity. However, an overlooked scenario exists where clients belong to distinctive groups, or, client types, in which groups of clients share similar characteristics such as device specifications or data patterns. Despite being common in group collaborations, this scenario has been overlooked in previous research, potentially leading to performance degradation and systemic biases against certain client types. To bridge this gap, we introduce Federated learning with Group Customization and Reweighting (FedGCR). FedGCR enhances both performance and fairness for FL with Distinct Client Types, consisting of a Federated Group Customization (FedGC) model to provide customization via a novel prompt tuning technique to mitigate the data disparity across different client-types, and a Federated Group Reweighting (FedGR) aggregation scheme to ensure uniform and unbiased performances between clients and between client types by a novel reweighting approach. Extensive experiment comparisons with prior FL methods in domain adaptation and fairness demonstrate the superiority of FedGCR in all metrics, including the overall accuracy and performance uniformity in both the group and the individual level. FedGCR achieves 82.74% accuracy and 12.26(↓) in performance uniformity on the Digit-Five dataset and 81.88% and 14.88%(↓) on DomainNet with a domain imbalance factor of 10, which significantly outperforms the state-of-the-art. Code is available at https://github.com/celinezheng/fedgcr.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助jun采纳,获得10
2秒前
3秒前
华仔应助aprise采纳,获得10
3秒前
Hoooo...发布了新的文献求助10
3秒前
小马甲应助hongliyu98采纳,获得10
4秒前
4秒前
5秒前
6秒前
科研通AI2S应助unflycn采纳,获得30
6秒前
6秒前
7秒前
冷艳灵萱发布了新的文献求助10
8秒前
纸飞机完成签到,获得积分20
8秒前
zhongyi完成签到,获得积分10
8秒前
孙瞳完成签到,获得积分10
9秒前
无所屌谓发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
五五完成签到,获得积分10
13秒前
康康发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
无花果应助牛顿不吃果采纳,获得10
15秒前
安静的ky发布了新的文献求助30
15秒前
15秒前
别闹闹完成签到,获得积分10
16秒前
1234567xjy发布了新的文献求助10
17秒前
17秒前
Moon完成签到 ,获得积分10
18秒前
慕青应助无所屌谓采纳,获得10
19秒前
香蕉觅云应助Eve采纳,获得10
19秒前
19秒前
zjy2023完成签到,获得积分10
19秒前
隐形的雁风完成签到,获得积分10
20秒前
20秒前
20秒前
21秒前
黑色幽默发布了新的文献求助10
21秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123185
求助须知:如何正确求助?哪些是违规求助? 2773671
关于积分的说明 7719164
捐赠科研通 2429389
什么是DOI,文献DOI怎么找? 1290277
科研通“疑难数据库(出版商)”最低求助积分说明 621803
版权声明 600251