亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fully automated operational modal identification based on scale-space peak picking algorithm and power spectral density estimation

情态动词 比例(比率) 光谱密度 鉴定(生物学) 计算机科学 工作模态分析 空格(标点符号) 算法 密度估算 估计 功率(物理) 数学 模态分析 统计 工程类 物理 地理 声学 材料科学 电信 地图学 操作系统 估计员 高分子化学 生物 振动 系统工程 量子力学 植物
作者
Xiao Li,Yu-Xia Dong,Feng‐Liang Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (7): 076206-076206 被引量:4
标识
DOI:10.1088/1361-6501/ad3a8d
摘要

Abstract Modal analysis is a fundamental and essential research direction in the field of structural engineering. The ultimate goal is to determine the modal parameters of the structures. However, the existing modal analysis algorithms often require a large number of parameter adjustments and manual intervention during operation, which cannot be fully automated. In order to realize the automatic identification of modal parameters, the automatic operational modal identification method (AOMI) is proposed based on the interpolated power spectral density estimation (IPSE). To achieve more precise spectrum analysis in the low-frequency band, IPSE is employed to perform Fourier transform on the original frequency domain segment with optimized frequency resolution. This enhances the sharpness of the obtained spectrum in the low-frequency range, making peak frequencies more discernible. Subsequently, the scale-space peak picking algorithm is used to automatically obtain the peak of the power spectral density (PSD), thus enabling the automatic identification of the natural frequency. Finally, the frequency domain decomposition method (FDD) is used to identify modal parameters based on the natural frequencies. The effectiveness of AOMI is verified through the modal identification of the old steel truss bridge and the three layer framework. Under the environmental excitation, the frequencies identified by the IPSE method is close to that of FDD, Bayesian fast fourier transform (FFT) and covariance driven stochastic subspace identification (SSI-COV). Furthermore, the PSD obtained through IPSE has sharper peak than that of FDD and the Welch’s method. The damping ratio identification accuracy and modal assurance criterion (MAC) are satisfactory in AOMI, which can improve the automatic performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拉长的迎曼完成签到 ,获得积分10
1秒前
2秒前
乐乐应助小飞采纳,获得10
2秒前
2秒前
7秒前
sunny完成签到 ,获得积分10
11秒前
zjh完成签到 ,获得积分10
12秒前
赘婿应助mogekkko采纳,获得10
13秒前
zbb123完成签到 ,获得积分10
14秒前
AamirAli完成签到,获得积分10
16秒前
汉堡包应助小飞采纳,获得10
16秒前
拿铁小笼包完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
24秒前
DAOXIAN完成签到,获得积分10
25秒前
29秒前
cqhecq完成签到,获得积分10
29秒前
taku完成签到 ,获得积分10
30秒前
香蕉觅云应助hyodong采纳,获得10
31秒前
打打应助赵振辉采纳,获得10
31秒前
33秒前
33秒前
情怀应助有魅力的仙人掌采纳,获得10
33秒前
斯文败类应助小飞采纳,获得10
34秒前
mogekkko发布了新的文献求助10
35秒前
35秒前
npknpk发布了新的文献求助10
37秒前
38秒前
叶子发布了新的文献求助10
40秒前
40秒前
42秒前
huhu发布了新的文献求助10
42秒前
壮观冷卉完成签到,获得积分10
43秒前
FashionBoy应助npknpk采纳,获得10
44秒前
hyodong发布了新的文献求助10
46秒前
kyra完成签到,获得积分10
46秒前
赵振辉发布了新的文献求助10
47秒前
wanci应助小飞采纳,获得10
49秒前
阿瓜师傅完成签到 ,获得积分10
50秒前
bkagyin应助一丁雨采纳,获得10
53秒前
赵振辉完成签到,获得积分10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650648
求助须知:如何正确求助?哪些是违规求助? 4781203
关于积分的说明 15052447
捐赠科研通 4809531
什么是DOI,文献DOI怎么找? 2572337
邀请新用户注册赠送积分活动 1528474
关于科研通互助平台的介绍 1487332