Fully automated operational modal identification based on scale-space peak picking algorithm and power spectral density estimation

情态动词 比例(比率) 光谱密度 鉴定(生物学) 计算机科学 工作模态分析 空格(标点符号) 算法 密度估算 估计 功率(物理) 数学 模态分析 统计 工程类 物理 地理 声学 材料科学 电信 地图学 操作系统 估计员 高分子化学 生物 振动 系统工程 量子力学 植物
作者
Xiao Li,Yu-Xia Dong,Feng‐Liang Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (7): 076206-076206 被引量:4
标识
DOI:10.1088/1361-6501/ad3a8d
摘要

Abstract Modal analysis is a fundamental and essential research direction in the field of structural engineering. The ultimate goal is to determine the modal parameters of the structures. However, the existing modal analysis algorithms often require a large number of parameter adjustments and manual intervention during operation, which cannot be fully automated. In order to realize the automatic identification of modal parameters, the automatic operational modal identification method (AOMI) is proposed based on the interpolated power spectral density estimation (IPSE). To achieve more precise spectrum analysis in the low-frequency band, IPSE is employed to perform Fourier transform on the original frequency domain segment with optimized frequency resolution. This enhances the sharpness of the obtained spectrum in the low-frequency range, making peak frequencies more discernible. Subsequently, the scale-space peak picking algorithm is used to automatically obtain the peak of the power spectral density (PSD), thus enabling the automatic identification of the natural frequency. Finally, the frequency domain decomposition method (FDD) is used to identify modal parameters based on the natural frequencies. The effectiveness of AOMI is verified through the modal identification of the old steel truss bridge and the three layer framework. Under the environmental excitation, the frequencies identified by the IPSE method is close to that of FDD, Bayesian fast fourier transform (FFT) and covariance driven stochastic subspace identification (SSI-COV). Furthermore, the PSD obtained through IPSE has sharper peak than that of FDD and the Welch’s method. The damping ratio identification accuracy and modal assurance criterion (MAC) are satisfactory in AOMI, which can improve the automatic performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
xiaotingMa完成签到,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
英姑应助爱笑的香寒采纳,获得10
3秒前
我是老大应助fafafa采纳,获得30
4秒前
仙女爷爷完成签到,获得积分10
4秒前
宁好完成签到 ,获得积分10
4秒前
hhhh关注了科研通微信公众号
4秒前
万能图书馆应助lcc采纳,获得10
5秒前
tiger发布了新的文献求助20
5秒前
李勤_秦礼发布了新的文献求助10
6秒前
wfrg完成签到,获得积分10
6秒前
6秒前
7秒前
axlyjia发布了新的文献求助10
7秒前
7秒前
清秀谷菱完成签到 ,获得积分20
9秒前
量子星尘发布了新的文献求助10
9秒前
彭于晏应助march采纳,获得10
9秒前
12秒前
赵顺勇发布了新的文献求助10
12秒前
LX有理想完成签到 ,获得积分10
15秒前
16秒前
科研通AI6应助李勤_秦礼采纳,获得10
16秒前
ssr发布了新的文献求助10
18秒前
Skymi完成签到,获得积分10
18秒前
19秒前
little z发布了新的文献求助20
19秒前
小企企发布了新的文献求助10
20秒前
22秒前
22秒前
迷路雨寒应助march采纳,获得20
22秒前
23秒前
hhhh发布了新的文献求助30
25秒前
dragon发布了新的文献求助10
26秒前
久ling完成签到 ,获得积分10
26秒前
pzh关闭了pzh文献求助
27秒前
28秒前
小二郎应助赵顺勇采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680387
求助须知:如何正确求助?哪些是违规求助? 4998746
关于积分的说明 15172902
捐赠科研通 4840349
什么是DOI,文献DOI怎么找? 2593972
邀请新用户注册赠送积分活动 1546968
关于科研通互助平台的介绍 1504989