Fully automated operational modal identification based on scale-space peak picking algorithm and power spectral density estimation

情态动词 比例(比率) 光谱密度 鉴定(生物学) 计算机科学 工作模态分析 空格(标点符号) 算法 密度估算 估计 功率(物理) 数学 模态分析 统计 工程类 物理 地理 声学 材料科学 电信 地图学 操作系统 估计员 高分子化学 生物 振动 系统工程 量子力学 植物
作者
Xiao Li,Yu-Xia Dong,Feng‐Liang Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (7): 076206-076206 被引量:4
标识
DOI:10.1088/1361-6501/ad3a8d
摘要

Abstract Modal analysis is a fundamental and essential research direction in the field of structural engineering. The ultimate goal is to determine the modal parameters of the structures. However, the existing modal analysis algorithms often require a large number of parameter adjustments and manual intervention during operation, which cannot be fully automated. In order to realize the automatic identification of modal parameters, the automatic operational modal identification method (AOMI) is proposed based on the interpolated power spectral density estimation (IPSE). To achieve more precise spectrum analysis in the low-frequency band, IPSE is employed to perform Fourier transform on the original frequency domain segment with optimized frequency resolution. This enhances the sharpness of the obtained spectrum in the low-frequency range, making peak frequencies more discernible. Subsequently, the scale-space peak picking algorithm is used to automatically obtain the peak of the power spectral density (PSD), thus enabling the automatic identification of the natural frequency. Finally, the frequency domain decomposition method (FDD) is used to identify modal parameters based on the natural frequencies. The effectiveness of AOMI is verified through the modal identification of the old steel truss bridge and the three layer framework. Under the environmental excitation, the frequencies identified by the IPSE method is close to that of FDD, Bayesian fast fourier transform (FFT) and covariance driven stochastic subspace identification (SSI-COV). Furthermore, the PSD obtained through IPSE has sharper peak than that of FDD and the Welch’s method. The damping ratio identification accuracy and modal assurance criterion (MAC) are satisfactory in AOMI, which can improve the automatic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rr完成签到,获得积分10
刚刚
ding应助TT001采纳,获得10
1秒前
2秒前
项彼夜完成签到,获得积分10
2秒前
开心香岚发布了新的文献求助10
2秒前
Jerry完成签到,获得积分10
4秒前
4秒前
桐桐应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
yier应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
子车茗应助科研通管家采纳,获得30
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
子车茗应助科研通管家采纳,获得30
7秒前
子车茗应助科研通管家采纳,获得30
7秒前
喽喽完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
foxp3完成签到,获得积分10
8秒前
走过的风发布了新的文献求助10
9秒前
开心香岚完成签到,获得积分10
9秒前
臧晓蕾发布了新的文献求助10
11秒前
爱听歌的夏烟完成签到,获得积分10
11秒前
时尚的冰棍儿完成签到 ,获得积分0
12秒前
喽喽发布了新的文献求助30
12秒前
张小小发布了新的文献求助10
14秒前
果果应助高胜寒采纳,获得10
14秒前
14秒前
华仔应助livo采纳,获得10
14秒前
方向发布了新的文献求助10
15秒前
Sylvia完成签到,获得积分10
15秒前
orixero应助af采纳,获得10
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5130554
求助须知:如何正确求助?哪些是违规求助? 4332648
关于积分的说明 13498156
捐赠科研通 4169169
什么是DOI,文献DOI怎么找? 2285499
邀请新用户注册赠送积分活动 1286489
关于科研通互助平台的介绍 1227430