Fully automated operational modal identification based on scale-space peak picking algorithm and power spectral density estimation

情态动词 比例(比率) 光谱密度 鉴定(生物学) 计算机科学 工作模态分析 空格(标点符号) 算法 密度估算 估计 功率(物理) 数学 模态分析 统计 工程类 物理 地理 声学 材料科学 电信 地图学 操作系统 估计员 高分子化学 生物 振动 系统工程 量子力学 植物
作者
Xiao Li,Yu-Xia Dong,Feng‐Liang Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (7): 076206-076206 被引量:4
标识
DOI:10.1088/1361-6501/ad3a8d
摘要

Abstract Modal analysis is a fundamental and essential research direction in the field of structural engineering. The ultimate goal is to determine the modal parameters of the structures. However, the existing modal analysis algorithms often require a large number of parameter adjustments and manual intervention during operation, which cannot be fully automated. In order to realize the automatic identification of modal parameters, the automatic operational modal identification method (AOMI) is proposed based on the interpolated power spectral density estimation (IPSE). To achieve more precise spectrum analysis in the low-frequency band, IPSE is employed to perform Fourier transform on the original frequency domain segment with optimized frequency resolution. This enhances the sharpness of the obtained spectrum in the low-frequency range, making peak frequencies more discernible. Subsequently, the scale-space peak picking algorithm is used to automatically obtain the peak of the power spectral density (PSD), thus enabling the automatic identification of the natural frequency. Finally, the frequency domain decomposition method (FDD) is used to identify modal parameters based on the natural frequencies. The effectiveness of AOMI is verified through the modal identification of the old steel truss bridge and the three layer framework. Under the environmental excitation, the frequencies identified by the IPSE method is close to that of FDD, Bayesian fast fourier transform (FFT) and covariance driven stochastic subspace identification (SSI-COV). Furthermore, the PSD obtained through IPSE has sharper peak than that of FDD and the Welch’s method. The damping ratio identification accuracy and modal assurance criterion (MAC) are satisfactory in AOMI, which can improve the automatic performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Kurimi完成签到,获得积分10
刚刚
充电宝应助guard采纳,获得10
刚刚
Hw完成签到,获得积分10
2秒前
2秒前
2秒前
ding应助半圆亻采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
传奇3应助jirry采纳,获得10
5秒前
6秒前
6秒前
6秒前
7秒前
7秒前
Lucas应助张张采纳,获得50
7秒前
Ren关注了科研通微信公众号
7秒前
7秒前
FU发布了新的文献求助10
7秒前
8秒前
nffl应助wjq采纳,获得10
9秒前
Hey完成签到 ,获得积分10
9秒前
和谐静竹发布了新的文献求助10
10秒前
10秒前
JQB发布了新的文献求助10
10秒前
10秒前
韩雨桐发布了新的文献求助10
11秒前
乐观发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
尔信发布了新的文献求助10
12秒前
小马甲应助QLLW采纳,获得10
12秒前
12秒前
13秒前
火星上的寒安完成签到,获得积分10
13秒前
14秒前
14秒前
可靠的店员完成签到,获得积分10
15秒前
希望天下0贩的0应助乐观采纳,获得10
15秒前
sss驳回了852应助
16秒前
Zz完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663531
求助须知:如何正确求助?哪些是违规求助? 4850935
关于积分的说明 15104899
捐赠科研通 4821760
什么是DOI,文献DOI怎么找? 2580993
邀请新用户注册赠送积分活动 1535205
关于科研通互助平台的介绍 1493552