Fully automated operational modal identification based on scale-space peak picking algorithm and power spectral density estimation

情态动词 比例(比率) 光谱密度 鉴定(生物学) 计算机科学 工作模态分析 空格(标点符号) 算法 密度估算 估计 功率(物理) 数学 模态分析 统计 工程类 物理 地理 声学 材料科学 电信 地图学 操作系统 估计员 高分子化学 生物 振动 系统工程 量子力学 植物
作者
Xiao Li,Yu-Xia Dong,Feng‐Liang Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (7): 076206-076206 被引量:4
标识
DOI:10.1088/1361-6501/ad3a8d
摘要

Abstract Modal analysis is a fundamental and essential research direction in the field of structural engineering. The ultimate goal is to determine the modal parameters of the structures. However, the existing modal analysis algorithms often require a large number of parameter adjustments and manual intervention during operation, which cannot be fully automated. In order to realize the automatic identification of modal parameters, the automatic operational modal identification method (AOMI) is proposed based on the interpolated power spectral density estimation (IPSE). To achieve more precise spectrum analysis in the low-frequency band, IPSE is employed to perform Fourier transform on the original frequency domain segment with optimized frequency resolution. This enhances the sharpness of the obtained spectrum in the low-frequency range, making peak frequencies more discernible. Subsequently, the scale-space peak picking algorithm is used to automatically obtain the peak of the power spectral density (PSD), thus enabling the automatic identification of the natural frequency. Finally, the frequency domain decomposition method (FDD) is used to identify modal parameters based on the natural frequencies. The effectiveness of AOMI is verified through the modal identification of the old steel truss bridge and the three layer framework. Under the environmental excitation, the frequencies identified by the IPSE method is close to that of FDD, Bayesian fast fourier transform (FFT) and covariance driven stochastic subspace identification (SSI-COV). Furthermore, the PSD obtained through IPSE has sharper peak than that of FDD and the Welch’s method. The damping ratio identification accuracy and modal assurance criterion (MAC) are satisfactory in AOMI, which can improve the automatic performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Levi李发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
ynchendt完成签到,获得积分10
1秒前
顾矜应助scl123采纳,获得10
1秒前
竹9完成签到,获得积分10
2秒前
蓝天应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得30
2秒前
田様应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
2秒前
兰先生发布了新的文献求助10
2秒前
Chen发布了新的文献求助10
4秒前
科研通AI6应助violet采纳,获得10
4秒前
5秒前
温暖静柏发布了新的文献求助10
6秒前
6秒前
6秒前
8秒前
9秒前
夹心饼干完成签到,获得积分10
9秒前
elang发布了新的文献求助50
9秒前
10秒前
wangyanyan完成签到,获得积分10
10秒前
hoax发布了新的文献求助10
11秒前
11秒前
小蘑菇应助蒸馏水采纳,获得10
11秒前
12秒前
美少女壮士完成签到,获得积分10
12秒前
星苒发布了新的文献求助10
12秒前
yolo完成签到,获得积分10
13秒前
13秒前
14秒前
上官若男应助Bacian采纳,获得30
14秒前
15秒前
可爱的函函应助美好斓采纳,获得10
15秒前
柠檬发布了新的文献求助10
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569802
求助须知:如何正确求助?哪些是违规求助? 4654951
关于积分的说明 14710692
捐赠科研通 4596026
什么是DOI,文献DOI怎么找? 2522224
邀请新用户注册赠送积分活动 1493421
关于科研通互助平台的介绍 1464030