Fully automated operational modal identification based on scale-space peak picking algorithm and power spectral density estimation

情态动词 比例(比率) 光谱密度 鉴定(生物学) 计算机科学 工作模态分析 空格(标点符号) 算法 密度估算 估计 功率(物理) 数学 模态分析 统计 工程类 物理 地理 声学 材料科学 电信 地图学 操作系统 估计员 高分子化学 生物 振动 系统工程 量子力学 植物
作者
Xiao Li,Yu-Xia Dong,Feng‐Liang Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (7): 076206-076206 被引量:4
标识
DOI:10.1088/1361-6501/ad3a8d
摘要

Abstract Modal analysis is a fundamental and essential research direction in the field of structural engineering. The ultimate goal is to determine the modal parameters of the structures. However, the existing modal analysis algorithms often require a large number of parameter adjustments and manual intervention during operation, which cannot be fully automated. In order to realize the automatic identification of modal parameters, the automatic operational modal identification method (AOMI) is proposed based on the interpolated power spectral density estimation (IPSE). To achieve more precise spectrum analysis in the low-frequency band, IPSE is employed to perform Fourier transform on the original frequency domain segment with optimized frequency resolution. This enhances the sharpness of the obtained spectrum in the low-frequency range, making peak frequencies more discernible. Subsequently, the scale-space peak picking algorithm is used to automatically obtain the peak of the power spectral density (PSD), thus enabling the automatic identification of the natural frequency. Finally, the frequency domain decomposition method (FDD) is used to identify modal parameters based on the natural frequencies. The effectiveness of AOMI is verified through the modal identification of the old steel truss bridge and the three layer framework. Under the environmental excitation, the frequencies identified by the IPSE method is close to that of FDD, Bayesian fast fourier transform (FFT) and covariance driven stochastic subspace identification (SSI-COV). Furthermore, the PSD obtained through IPSE has sharper peak than that of FDD and the Welch’s method. The damping ratio identification accuracy and modal assurance criterion (MAC) are satisfactory in AOMI, which can improve the automatic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ikun发布了新的文献求助10
刚刚
尊敬雨灵完成签到,获得积分10
刚刚
2秒前
3秒前
lyus关注了科研通微信公众号
4秒前
4秒前
renew完成签到,获得积分20
5秒前
5秒前
从容的元槐完成签到,获得积分20
6秒前
重要的天空完成签到 ,获得积分10
13秒前
15秒前
16秒前
17秒前
忧郁含海完成签到 ,获得积分10
18秒前
ttz发布了新的文献求助10
19秒前
19秒前
搜集达人应助renew采纳,获得50
20秒前
JackeyHu发布了新的文献求助10
20秒前
zzp完成签到,获得积分10
21秒前
bolin发布了新的文献求助10
21秒前
benj完成签到,获得积分10
21秒前
zhikaiyici应助微笑的傲易采纳,获得10
22秒前
27秒前
ttz完成签到,获得积分10
27秒前
28秒前
科目三应助bolin采纳,获得10
31秒前
33秒前
哎嘿应助科研通管家采纳,获得10
33秒前
小马甲应助科研通管家采纳,获得10
33秒前
不配.应助科研通管家采纳,获得10
33秒前
哎嘿应助科研通管家采纳,获得10
33秒前
慕青应助科研通管家采纳,获得10
33秒前
我要毕业完成签到 ,获得积分10
36秒前
starofjlu应助是小曹啊采纳,获得20
38秒前
Arthur发布了新的文献求助10
42秒前
43秒前
彭于晏应助寒冷的曼易采纳,获得10
44秒前
47秒前
49秒前
52秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151970
求助须知:如何正确求助?哪些是违规求助? 2803266
关于积分的说明 7852878
捐赠科研通 2460679
什么是DOI,文献DOI怎么找? 1309983
科研通“疑难数据库(出版商)”最低求助积分说明 629087
版权声明 601760