From Bench-to-Bedside: How Artificial Intelligence is Changing Thyroid Nodule Diagnostics, a Systematic Review

从长凳到床边 医学 甲状腺 结核(地质) 医学物理学 重症监护医学 计算机科学 病理 内科学 古生物学 生物
作者
Vivek Sant,Ashwath Radhachandran,Vedrana Ivezić,Denise Lee,Masha J. Livhits,James X. Wu,Rinat Masamed,Corey Arnold,Michael W. Yeh,William Speier
出处
期刊:The Journal of Clinical Endocrinology and Metabolism [Oxford University Press]
卷期号:109 (7): 1684-1693 被引量:4
标识
DOI:10.1210/clinem/dgae277
摘要

Abstract Context Use of artificial intelligence (AI) to predict clinical outcomes in thyroid nodule diagnostics has grown exponentially over the past decade. The greatest challenge is in understanding the best model to apply to one's own patient population, and how to operationalize such a model in practice. Evidence Acquisition A literature search of PubMed and IEEE Xplore was conducted for English-language publications between January 1, 2015 and January 1, 2023, studying diagnostic tests on suspected thyroid nodules that used AI. We excluded articles without prospective or external validation, nonprimary literature, duplicates, focused on nonnodular thyroid conditions, not using AI, and those incidentally using AI in support of an experimental diagnostic outside standard clinical practice. Quality was graded by Oxford level of evidence. Evidence Synthesis A total of 61 studies were identified; all performed external validation, 16 studies were prospective, and 33 compared a model to physician prediction of ground truth. Statistical validation was reported in 50 papers. A diagnostic pipeline was abstracted, yielding 5 high-level outcomes: (1) nodule localization, (2) ultrasound (US) risk score, (3) molecular status, (4) malignancy, and (5) long-term prognosis. Seven prospective studies validated a single commercial AI; strengths included automating nodule feature assessment from US and assisting the physician in predicting malignancy risk, while weaknesses included automated margin prediction and interobserver variability. Conclusion Models predominantly used US images to predict malignancy. Of 4 Food and Drug Administration–approved products, only S-Detect was extensively validated. Implementing an AI model locally requires data sanitization and revalidation to ensure appropriate clinical performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cherish发布了新的文献求助10
刚刚
晨晨完成签到,获得积分20
1秒前
1秒前
噜噜噜完成签到,获得积分10
1秒前
尉迟涵发布了新的文献求助10
2秒前
张美丽发布了新的文献求助10
2秒前
2秒前
从前的我发布了新的文献求助10
2秒前
眼睛大雨筠给小郭的求助进行了留言
4秒前
领导范儿应助lsf采纳,获得10
4秒前
摸鱼ing发布了新的文献求助10
5秒前
Ava应助博观屋采纳,获得10
5秒前
合适台灯发布了新的文献求助10
5秒前
007完成签到,获得积分10
7秒前
7秒前
许安完成签到 ,获得积分10
7秒前
7秒前
缥缈一曲完成签到,获得积分10
8秒前
8秒前
科研cc完成签到,获得积分20
9秒前
pd发布了新的文献求助20
10秒前
10秒前
领导范儿应助是瓜瓜不采纳,获得10
10秒前
山的那边关注了科研通微信公众号
11秒前
Juvenilesy完成签到,获得积分10
11秒前
11秒前
12秒前
打工肥仔应助大美美采纳,获得10
12秒前
洋洋洋完成签到,获得积分10
13秒前
星辰大海应助酷酷的枕头采纳,获得10
13秒前
Yang发布了新的文献求助30
13秒前
量子星尘发布了新的文献求助10
13秒前
fwz发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
14秒前
一直在笑完成签到,获得积分10
15秒前
研友_VZG7GZ应助ssq采纳,获得10
15秒前
小yi又困啦完成签到 ,获得积分10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961496
求助须知:如何正确求助?哪些是违规求助? 3507837
关于积分的说明 11138394
捐赠科研通 3240311
什么是DOI,文献DOI怎么找? 1790903
邀请新用户注册赠送积分活动 872636
科研通“疑难数据库(出版商)”最低求助积分说明 803288