From Bench-to-Bedside: How Artificial Intelligence is Changing Thyroid Nodule Diagnostics, a Systematic Review

从长凳到床边 医学 甲状腺 结核(地质) 医学物理学 重症监护医学 计算机科学 病理 内科学 生物 古生物学
作者
Vivek Sant,Ashwath Radhachandran,Vedrana Ivezić,Denise Lee,Masha J. Livhits,James X. Wu,Rinat Masamed,Corey Arnold,Michael W. Yeh,William Speier
出处
期刊:The Journal of Clinical Endocrinology and Metabolism [The Endocrine Society]
卷期号:109 (7): 1684-1693 被引量:8
标识
DOI:10.1210/clinem/dgae277
摘要

Abstract Context Use of artificial intelligence (AI) to predict clinical outcomes in thyroid nodule diagnostics has grown exponentially over the past decade. The greatest challenge is in understanding the best model to apply to one's own patient population, and how to operationalize such a model in practice. Evidence Acquisition A literature search of PubMed and IEEE Xplore was conducted for English-language publications between January 1, 2015 and January 1, 2023, studying diagnostic tests on suspected thyroid nodules that used AI. We excluded articles without prospective or external validation, nonprimary literature, duplicates, focused on nonnodular thyroid conditions, not using AI, and those incidentally using AI in support of an experimental diagnostic outside standard clinical practice. Quality was graded by Oxford level of evidence. Evidence Synthesis A total of 61 studies were identified; all performed external validation, 16 studies were prospective, and 33 compared a model to physician prediction of ground truth. Statistical validation was reported in 50 papers. A diagnostic pipeline was abstracted, yielding 5 high-level outcomes: (1) nodule localization, (2) ultrasound (US) risk score, (3) molecular status, (4) malignancy, and (5) long-term prognosis. Seven prospective studies validated a single commercial AI; strengths included automating nodule feature assessment from US and assisting the physician in predicting malignancy risk, while weaknesses included automated margin prediction and interobserver variability. Conclusion Models predominantly used US images to predict malignancy. Of 4 Food and Drug Administration–approved products, only S-Detect was extensively validated. Implementing an AI model locally requires data sanitization and revalidation to ensure appropriate clinical performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李爱国应助源正生物采纳,获得10
2秒前
lindadsl完成签到,获得积分10
2秒前
西柚完成签到 ,获得积分10
4秒前
感动傀斗完成签到,获得积分10
4秒前
4秒前
4秒前
清爽的大树完成签到,获得积分10
5秒前
隐形曼青应助congcong成协采纳,获得10
6秒前
mnjkio163完成签到,获得积分10
6秒前
就叫十一吧完成签到,获得积分10
7秒前
焦糖完成签到,获得积分10
9秒前
10秒前
高高的无颜完成签到,获得积分10
11秒前
顺利毕业发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
笨笨千亦完成签到 ,获得积分10
12秒前
c_Yeats完成签到,获得积分10
13秒前
tao完成签到 ,获得积分10
13秒前
14秒前
鱼鱼鱼完成签到,获得积分10
15秒前
18秒前
风中的飞机完成签到,获得积分10
19秒前
Joyce完成签到,获得积分10
20秒前
leo完成签到,获得积分10
22秒前
李健的小迷弟应助cdercder采纳,获得10
23秒前
xxxx完成签到,获得积分20
23秒前
24秒前
量子星尘发布了新的文献求助10
24秒前
Larry1226完成签到,获得积分10
24秒前
娜娜发布了新的文献求助10
25秒前
27秒前
1111完成签到,获得积分10
27秒前
Nothing发布了新的文献求助10
28秒前
郑大钱完成签到,获得积分10
28秒前
我我我完成签到,获得积分10
29秒前
31秒前
五月完成签到 ,获得积分10
32秒前
李周发布了新的文献求助10
33秒前
彭于晏应助Dr.c采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733187
求助须知:如何正确求助?哪些是违规求助? 5346686
关于积分的说明 15323180
捐赠科研通 4878353
什么是DOI,文献DOI怎么找? 2621161
邀请新用户注册赠送积分活动 1570287
关于科研通互助平台的介绍 1527172