亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

From Bench-to-Bedside: How Artificial Intelligence Is Changing Thyroid Nodule Diagnostics

医学 甲状腺结节 结核(地质) 背景(考古学) 恶性肿瘤 医学物理学 人口 人工智能 放射科 机器学习 计算机科学 病理 古生物学 环境卫生 生物
作者
Vivek Sant,Ashwath Radhachandran,Vedrana Ivezić,Denise Lee,Masha J. Livhits,James X. Wu,Rinat Masamed,Corey Arnold,Michael W. Yeh,William Speier
出处
期刊:The Journal of Clinical Endocrinology and Metabolism [The Endocrine Society]
被引量:1
标识
DOI:10.1210/clinem/dgae277
摘要

Abstract Context Use of artificial intelligence (AI) to predict clinical outcomes in thyroid nodule diagnostics has grown exponentially over the past decade. The greatest challenge is in understanding the best model to apply to one’s own patient population, and how to operationalize such a model in practice. Evidence Acquisition A literature search of PubMed and IEEE Xplore was conducted for English language publications between January 1, 2015 and January 1, 2023 studying diagnostic tests on suspected thyroid nodules that utilized AI. We excluded articles without prospective or external validation, non-primary literature, duplicates, focused on non-nodular thyroid conditions, not using AI, and those incidentally utilizing AI in support of an experimental diagnostic outside standard clinical practice. Quality was graded by Oxford level of evidence. Evidence Synthesis A total of 61 studies were identified; all performed external validation, sixteen studies were prospective, and 33 compared a model to physician prediction of ground truth. Statistical validation was reported in 50 papers. A diagnostic pipeline was abstracted, yielding five high-level outcomes: (1) nodule localization, (2) ultrasound risk score, (3) molecular status, (4) malignancy, and (5) long-term prognosis. Seven prospective studies validated a single commercial AI; strengths included automating nodule feature assessment from ultrasound and assisting the physician in predicting malignancy risk, while weaknesses included automated margin prediction and inter-observer variability. Conclusions Models predominantly used ultrasound images to predict malignancy. Of four FDA-approved products, only S-Detect was extensively validated. Implementing an AI model locally requires data sanitization and re-validation to ensure appropriate clinical performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷你的靖雁完成签到,获得积分10
12秒前
传奇完成签到 ,获得积分10
17秒前
傲娇完成签到,获得积分20
23秒前
科研螺丝完成签到 ,获得积分10
35秒前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
hzc应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
傲娇发布了新的文献求助10
1分钟前
激动的似狮完成签到,获得积分10
2分钟前
jokerhoney完成签到,获得积分10
2分钟前
2分钟前
斯文果汁发布了新的文献求助10
2分钟前
迷路海露发布了新的文献求助10
3分钟前
共享精神应助科研通管家采纳,获得10
3分钟前
思源应助科研通管家采纳,获得30
3分钟前
朴素的山蝶完成签到 ,获得积分10
3分钟前
烨枫晨曦完成签到,获得积分10
3分钟前
上官若男应助迷路海露采纳,获得10
3分钟前
迷路海露完成签到,获得积分10
3分钟前
沉淀完成签到 ,获得积分10
4分钟前
舒心豪英完成签到 ,获得积分10
4分钟前
Simon完成签到,获得积分10
5分钟前
读研霹雳完成签到 ,获得积分10
5分钟前
Akim应助科研通管家采纳,获得10
5分钟前
orixero应助千寻采纳,获得10
5分钟前
5分钟前
5分钟前
千寻给千寻的求助进行了留言
5分钟前
6分钟前
千寻完成签到,获得积分10
6分钟前
戴哈哈发布了新的文献求助10
6分钟前
小马甲应助戴哈哈采纳,获得10
6分钟前
冰冰完成签到,获得积分10
6分钟前
6分钟前
千寻发布了新的文献求助10
6分钟前
温暖的盼山应助柠檬采纳,获得10
6分钟前
Ricardo完成签到 ,获得积分10
7分钟前
zsmj23完成签到 ,获得积分0
8分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133938
求助须知:如何正确求助?哪些是违规求助? 2784836
关于积分的说明 7768641
捐赠科研通 2440205
什么是DOI,文献DOI怎么找? 1297291
科研通“疑难数据库(出版商)”最低求助积分说明 624911
版权声明 600791