From Bench-to-Bedside: How Artificial Intelligence is Changing Thyroid Nodule Diagnostics, a Systematic Review

从长凳到床边 医学 甲状腺 结核(地质) 医学物理学 重症监护医学 计算机科学 病理 内科学 古生物学 生物
作者
Vivek Sant,Ashwath Radhachandran,Vedrana Ivezić,Denise Lee,Masha J. Livhits,James X. Wu,Rinat Masamed,Corey Arnold,Michael W. Yeh,William Speier
出处
期刊:The Journal of Clinical Endocrinology and Metabolism [The Endocrine Society]
卷期号:109 (7): 1684-1693 被引量:4
标识
DOI:10.1210/clinem/dgae277
摘要

Abstract Context Use of artificial intelligence (AI) to predict clinical outcomes in thyroid nodule diagnostics has grown exponentially over the past decade. The greatest challenge is in understanding the best model to apply to one's own patient population, and how to operationalize such a model in practice. Evidence Acquisition A literature search of PubMed and IEEE Xplore was conducted for English-language publications between January 1, 2015 and January 1, 2023, studying diagnostic tests on suspected thyroid nodules that used AI. We excluded articles without prospective or external validation, nonprimary literature, duplicates, focused on nonnodular thyroid conditions, not using AI, and those incidentally using AI in support of an experimental diagnostic outside standard clinical practice. Quality was graded by Oxford level of evidence. Evidence Synthesis A total of 61 studies were identified; all performed external validation, 16 studies were prospective, and 33 compared a model to physician prediction of ground truth. Statistical validation was reported in 50 papers. A diagnostic pipeline was abstracted, yielding 5 high-level outcomes: (1) nodule localization, (2) ultrasound (US) risk score, (3) molecular status, (4) malignancy, and (5) long-term prognosis. Seven prospective studies validated a single commercial AI; strengths included automating nodule feature assessment from US and assisting the physician in predicting malignancy risk, while weaknesses included automated margin prediction and interobserver variability. Conclusion Models predominantly used US images to predict malignancy. Of 4 Food and Drug Administration–approved products, only S-Detect was extensively validated. Implementing an AI model locally requires data sanitization and revalidation to ensure appropriate clinical performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助科研通管家采纳,获得30
刚刚
wanci应助科研通管家采纳,获得30
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
留胡子的霖完成签到,获得积分10
2秒前
2秒前
2秒前
su发布了新的文献求助10
2秒前
重庆马思纯完成签到,获得积分10
3秒前
3秒前
姚运龙发布了新的文献求助30
3秒前
BWZ发布了新的文献求助10
4秒前
123完成签到,获得积分10
4秒前
逸云完成签到,获得积分10
4秒前
小鼠拯救者完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
FFFFFFF应助啊娴仔采纳,获得10
6秒前
Liu发布了新的文献求助10
6秒前
6秒前
6秒前
大美女完成签到,获得积分10
7秒前
7秒前
科研三井泽完成签到,获得积分10
7秒前
7秒前
lyn发布了新的文献求助10
8秒前
沙拉完成签到,获得积分10
8秒前
8秒前
SV完成签到,获得积分10
8秒前
HYG发布了新的文献求助10
8秒前
9秒前
小蘑菇应助lkc采纳,获得10
9秒前
9秒前
清秀元柏发布了新的文献求助10
10秒前
Aria应助儒雅的秋珊采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762