Melting and solidification dynamics during laser melting of reaction-based metal matrix composites uncovered by in-situ synchrotron X-ray diffraction

材料科学 同步加速器 微观结构 降水 溶解 相(物质) 复合材料 选择性激光熔化 极限抗拉强度 化学物理 热力学 化学工程 化学 物理 气象学 有机化学 核物理学 工程类
作者
Minglei Qu,Jiandong Yuan,Ali Nabaa,Junye Huang,Andrew Chihpin Chuang,Lianyi Chen
出处
期刊:Acta Materialia [Elsevier]
卷期号:271: 119875-119875 被引量:3
标识
DOI:10.1016/j.actamat.2024.119875
摘要

Laser additive manufacturing (AM) of reaction-based metal matrix composites (MMCs) involves highly complex and non-equilibrium material transformation behavior, including melting, dissolution, precipitation, and solidification. Yet, the dynamics and interplay of these phase transformation processes remain poorly understood, posing substantial challenges in identifying the microstructure formation mechanism, and predicting and controlling the microstructure in the printed parts. Here we performed the in-situ X-ray diffraction experiment to characterize the phase evolution dynamics of the 316L+10vol.%TiC system during laser melting, which provides the direct and quantitative insights of the complex phase reaction and evolution dynamics under rapid heating and cooling conditions relevant to additive manufacturing of reaction-based MMCs. Further in-depth thermodynamic and kinetic calculations revealed that most of the phase evolution behavior observed in the in-situ X-ray diffraction experiment cannot be solely explained by widely used equilibrium thermodynamic models, and diffusion-controlled nonequilibrium dissolution and precipitation kinetics must be considered to elucidate the complex phase evolution behavior, including incomplete TiC dissolution, and three-step TiC precipitation. The three distinct types of precipitates generate unique hierarchical TiC micro- and nanostructures, which enhances the yield strength from 513 MPa to 877 MPa by 71%, tensile strength from 628 MPa to 1054 MPa by 68%, Young's modulus from 193 GPa to 221 GPa by 14%. The findings of our research provide the knowledge foundation for the design of unique microstructures and advanced MMC materials through laser AM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
包容雨双完成签到,获得积分10
刚刚
刚刚
刚刚
君寻完成签到 ,获得积分10
1秒前
2秒前
wxgstc1发布了新的文献求助10
2秒前
3秒前
泥泥发布了新的文献求助10
3秒前
3秒前
ding应助科研通管家采纳,获得10
4秒前
不配.应助科研通管家采纳,获得10
4秒前
4秒前
调研昵称发布了新的文献求助10
4秒前
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
cdy应助科研通管家采纳,获得10
4秒前
ddddd发布了新的文献求助10
4秒前
5秒前
不配.应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
不配.应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
6秒前
orixero应助科研通管家采纳,获得10
6秒前
6秒前
郜雨寒发布了新的文献求助10
6秒前
七里香发布了新的文献求助10
6秒前
patrick发布了新的文献求助30
7秒前
7秒前
8秒前
傲慢与偏见zz应助hihi采纳,获得10
11秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242966
求助须知:如何正确求助?哪些是违规求助? 2887078
关于积分的说明 8246239
捐赠科研通 2555661
什么是DOI,文献DOI怎么找? 1383762
科研通“疑难数据库(出版商)”最低求助积分说明 649757
邀请新用户注册赠送积分活动 625625