生物炭
热解
化学
污水污泥
生物利用度
磷酸盐
尾矿
环境化学
磷
金属
核化学
废物管理
污水处理
有机化学
物理化学
工程类
生物
生物信息学
作者
Xiao Ya,Tinggui Yan,Pin Yao,Wenrui Xiang,Yunqi Wu,Jiang Li
标识
DOI:10.1016/j.wasman.2024.04.003
摘要
Phosphate tailings (PT) was used to reduce the release of heavy metals (HMs) during pyrolysis and the leachable rate of residual HMs, and simultaneously improve the bioavailability of phosphorus in the sludge-based biochar. The concentration of heavy metals and the fractions determined by BCR method was used to investigate the release and the transformation of Zn, Pb, Mn, Ni and Cu during pyrolysis involved with the effects of temperature and the addition of PT. The respective pyrolysis experiments shows that the release of Zn and Pb increases with temperature for both sewage sludge (SS) and PT, and the bioavailable fractions (F1 + F2) of Mn, Ni, and Cu increases with temperature for PT. During co-pyrolysis, blended samples released lower quantities of Zn and Pb and presented lower bioavailability of HMs than the individual SS or PT. A synergistic effect of co-pyrolysis was evident for volatile Zn and Pb. The decomposition of CaMg (CO3)2 from PT produced CaO, by which the volatile ZnCl2 and PbCl2 were transformed into ZnO and PbO with less volatility and higher reactivity with SiO2 and Al2O3 than the chlorides. Then SiO2 and Al2O3 from SS acted as the final stabilizer to immobilize the oxides. The final product combined with SiO2 and Al2O3, such as ZnSiO4 and ZnAl2O4, were detected. The addition of PT also introduced more Ca and P into sludge to produce biochar with higher concentration of apatite phosphorus with higher bioavailability.
科研通智能强力驱动
Strongly Powered by AbleSci AI