Detecting Web Bots via Mouse Dynamics and Communication Metadata

元数据 计算机科学 动力学(音乐) 万维网 心理学 教育学
作者
August See,Tatjana Wingarz,Matz Radloff,Mathias Fischer
出处
期刊:IFIP advances in information and communication technology 卷期号:: 73-86 被引量:1
标识
DOI:10.1007/978-3-031-56326-3_6
摘要

The illegitimate automated usage of Internet services by web robots (bots) is an ongoing problem. While bots increase the cost of operations for service providers and can affect user satisfaction, e.g., in social media and games, the main problem is that some services should only be usable by humans, but their automated usage cannot be prevented easily. Currently, services are protected against bots using visual CAPTCHA systems, the de facto standard. However, they are often annoying for users to solve. Typically, CATPCHAs are combined with heuristics and machine-learning approaches to reduce the number of times a human needs to solve them. These approaches use request data like IP and cookies but also biometric data like mouse movements. Such detection systems are primarily closed source, do not provide any performance evaluation, or have unrealistic assumptions, e.g., that sophisticated bots only move the mouse in straight lines. Therefore we conducted an experiment to evaluate the usefulness of detection techniques based on mouse dynamics, request metadata, and a combination of both. Our findings indicate that biometric data in the form of mouse dynamics performs better than request data for bot detection. Further, training a mouse dynamic classifier benefits from external and not only website-specific mouse dynamics. Our classifier, which differentiates between artificial and human mouse movements, achieves similar results to related work under stricter and more realistic conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助猫和老鼠采纳,获得10
刚刚
1秒前
S.发布了新的文献求助10
2秒前
快乐静枫完成签到,获得积分20
2秒前
Owen应助沉静的含海采纳,获得30
3秒前
WWZ完成签到 ,获得积分10
4秒前
4秒前
别不开星完成签到,获得积分10
5秒前
小池池发布了新的文献求助10
5秒前
5秒前
cordial完成签到 ,获得积分10
6秒前
7秒前
7秒前
专注汲完成签到,获得积分10
7秒前
7秒前
7秒前
琅琅发布了新的文献求助10
8秒前
8秒前
8秒前
qqqq完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
快乐静枫发布了新的文献求助10
11秒前
会撒娇的一斩完成签到 ,获得积分10
11秒前
动听从寒发布了新的文献求助10
12秒前
12秒前
12秒前
346034525完成签到,获得积分10
14秒前
15秒前
blossom完成签到,获得积分10
15秒前
明亮不弱完成签到 ,获得积分10
15秒前
莎莎士比亚完成签到,获得积分10
16秒前
科研通AI6应助WNL采纳,获得10
16秒前
皮卡皮卡丘完成签到,获得积分10
16秒前
小苹果发布了新的文献求助10
16秒前
17秒前
卓初露完成签到 ,获得积分10
17秒前
18秒前
tian完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608030
求助须知:如何正确求助?哪些是违规求助? 4692545
关于积分的说明 14875103
捐赠科研通 4716441
什么是DOI,文献DOI怎么找? 2543963
邀请新用户注册赠送积分活动 1509033
关于科研通互助平台的介绍 1472758