Detecting Web Bots via Mouse Dynamics and Communication Metadata

元数据 计算机科学 动力学(音乐) 万维网 心理学 教育学
作者
August See,Tatjana Wingarz,Matz Radloff,Mathias Fischer
出处
期刊:IFIP advances in information and communication technology 卷期号:: 73-86 被引量:1
标识
DOI:10.1007/978-3-031-56326-3_6
摘要

The illegitimate automated usage of Internet services by web robots (bots) is an ongoing problem. While bots increase the cost of operations for service providers and can affect user satisfaction, e.g., in social media and games, the main problem is that some services should only be usable by humans, but their automated usage cannot be prevented easily. Currently, services are protected against bots using visual CAPTCHA systems, the de facto standard. However, they are often annoying for users to solve. Typically, CATPCHAs are combined with heuristics and machine-learning approaches to reduce the number of times a human needs to solve them. These approaches use request data like IP and cookies but also biometric data like mouse movements. Such detection systems are primarily closed source, do not provide any performance evaluation, or have unrealistic assumptions, e.g., that sophisticated bots only move the mouse in straight lines. Therefore we conducted an experiment to evaluate the usefulness of detection techniques based on mouse dynamics, request metadata, and a combination of both. Our findings indicate that biometric data in the form of mouse dynamics performs better than request data for bot detection. Further, training a mouse dynamic classifier benefits from external and not only website-specific mouse dynamics. Our classifier, which differentiates between artificial and human mouse movements, achieves similar results to related work under stricter and more realistic conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助高兴便当采纳,获得10
刚刚
1秒前
1秒前
didi发布了新的文献求助10
1秒前
3秒前
田様应助吴彦祖采纳,获得10
3秒前
1234发布了新的文献求助10
3秒前
Zx_1993应助韩志玉采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
6秒前
美丽慕儿发布了新的文献求助10
6秒前
7秒前
ebby发布了新的文献求助10
8秒前
SciGPT应助12采纳,获得10
9秒前
10秒前
11秒前
12秒前
13秒前
13秒前
白羊给白羊的求助进行了留言
13秒前
13秒前
陌回完成签到,获得积分10
14秒前
鲤鱼灵波发布了新的文献求助10
14秒前
allen发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
17秒前
19秒前
21秒前
漂亮糖豆发布了新的文献求助10
22秒前
23秒前
23秒前
直率的珍完成签到,获得积分10
23秒前
隐形曼青应助燕儿采纳,获得10
24秒前
24秒前
量子星尘发布了新的文献求助10
26秒前
26秒前
小青椒应助allen采纳,获得30
27秒前
甜甜的平蓝完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469534
求助须知:如何正确求助?哪些是违规求助? 4572619
关于积分的说明 14336346
捐赠科研通 4499426
什么是DOI,文献DOI怎么找? 2465098
邀请新用户注册赠送积分活动 1453599
关于科研通互助平台的介绍 1428091