Detecting Web Bots via Mouse Dynamics and Communication Metadata

元数据 计算机科学 动力学(音乐) 万维网 心理学 教育学
作者
August See,Tatjana Wingarz,Matz Radloff,Mathias Fischer
出处
期刊:IFIP advances in information and communication technology 卷期号:: 73-86 被引量:1
标识
DOI:10.1007/978-3-031-56326-3_6
摘要

The illegitimate automated usage of Internet services by web robots (bots) is an ongoing problem. While bots increase the cost of operations for service providers and can affect user satisfaction, e.g., in social media and games, the main problem is that some services should only be usable by humans, but their automated usage cannot be prevented easily. Currently, services are protected against bots using visual CAPTCHA systems, the de facto standard. However, they are often annoying for users to solve. Typically, CATPCHAs are combined with heuristics and machine-learning approaches to reduce the number of times a human needs to solve them. These approaches use request data like IP and cookies but also biometric data like mouse movements. Such detection systems are primarily closed source, do not provide any performance evaluation, or have unrealistic assumptions, e.g., that sophisticated bots only move the mouse in straight lines. Therefore we conducted an experiment to evaluate the usefulness of detection techniques based on mouse dynamics, request metadata, and a combination of both. Our findings indicate that biometric data in the form of mouse dynamics performs better than request data for bot detection. Further, training a mouse dynamic classifier benefits from external and not only website-specific mouse dynamics. Our classifier, which differentiates between artificial and human mouse movements, achieves similar results to related work under stricter and more realistic conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dolabmu完成签到 ,获得积分10
1秒前
MIST完成签到,获得积分10
2秒前
mochaff完成签到 ,获得积分10
2秒前
温暖的颜演完成签到 ,获得积分10
2秒前
WYang完成签到,获得积分10
2秒前
阿策完成签到,获得积分10
4秒前
小白白完成签到 ,获得积分10
6秒前
6秒前
风信子完成签到,获得积分10
7秒前
无机盐完成签到 ,获得积分10
7秒前
Cold-Drink-Shop完成签到,获得积分10
8秒前
whqpeter发布了新的文献求助10
11秒前
mmmmmmgm完成签到 ,获得积分10
13秒前
xiaofeng5838完成签到,获得积分10
18秒前
aoyo完成签到,获得积分10
20秒前
成长crs完成签到 ,获得积分10
20秒前
帅气的宽完成签到 ,获得积分10
24秒前
华仔应助靓丽的悒采纳,获得10
25秒前
Lucky完成签到 ,获得积分10
28秒前
Joy完成签到,获得积分10
31秒前
huminjie完成签到 ,获得积分10
33秒前
feng完成签到,获得积分10
34秒前
36秒前
研友_ZA2B68完成签到,获得积分0
37秒前
wei发布了新的文献求助10
39秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
41秒前
要自律的锅完成签到 ,获得积分10
42秒前
勤恳的书文完成签到 ,获得积分10
42秒前
靓丽的悒完成签到 ,获得积分10
43秒前
123123完成签到 ,获得积分10
44秒前
xiaoyi完成签到 ,获得积分10
45秒前
RenY完成签到,获得积分10
46秒前
灯座发布了新的文献求助10
48秒前
李璟文完成签到 ,获得积分10
48秒前
48秒前
Zhjie126完成签到,获得积分10
49秒前
Chris完成签到 ,获得积分0
51秒前
fancy发布了新的文献求助10
53秒前
54秒前
sa0022完成签到,获得积分10
55秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212353
求助须知:如何正确求助?哪些是违规求助? 4388551
关于积分的说明 13664063
捐赠科研通 4249022
什么是DOI,文献DOI怎么找? 2331365
邀请新用户注册赠送积分活动 1329024
关于科研通互助平台的介绍 1282440