化学
纳米孔
细胞内
小RNA
计算生物学
细胞
纳米技术
单细胞分析
生物物理学
细胞生物学
生物化学
基因
材料科学
生物
作者
Shujie Zhang,Lai-Bo Song,Ruina Zheng,Fang Zhang,Qimeng Wang,Xiaosui Mao,Jin‐Xuan Fan,Bo Liu,Yuan‐Di Zhao,Wei Chen
标识
DOI:10.1021/acs.analchem.3c05027
摘要
Accurate analysis of microRNAs (miRNAs) at the single-cell level is extremely important for deeply understanding their multiple and intricate biological functions. Despite some advancements in analyzing single-cell miRNAs, challenges such as intracellular interferences and insufficient detection limits still remain. In this work, an ultrasensitive nanopore sensor for quantitative single-cell miRNA-155 detection is constructed based on ionic current rectification (ICR) coupled with enzyme-free catalytic hairpin assembly (CHA). Benefiting from the enzyme-free CHA amplification strategy, the detection limit of the nanopore sensor for miRNA-155 reaches 10 fM and the nanopore sensor is more adaptable to complex intracellular environments. With the nanopore sensor, the concentration of miRNA-155 in living single cells is quantified to realize the early diagnosis of triple-negative breast cancer (TNBC). Furthermore, the nanopore sensor can be applied in screening anticancer drugs by tracking the expression level of miRNA-155. This work provides an adaptive and universal method for quantitatively analyzing intracellular miRNAs, which will greatly improve our understanding of cell heterogeneity and provide a more reliable scientific basis for exploring major diseases at the single-cell level.
科研通智能强力驱动
Strongly Powered by AbleSci AI