Single Stage Adaptive Multi-Attention Network for Image Restoration

去模糊 计算机科学 人工智能 稳健性(进化) 图像复原 像素 特征(语言学) 模式识别(心理学) 计算机视觉 图像(数学) 图像处理 生物化学 化学 语言学 哲学 基因
作者
Anas Zafar,Danyal Aftab,Rizwan Qureshi,Xinqi Fan,Pingjun Chen,Jia Wu,Hazrat Ali,Shah Nawaz,Sheheryar Khan,Mubarak Shah
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 2924-2935 被引量:7
标识
DOI:10.1109/tip.2024.3384838
摘要

Recently attention-based networks have been successful for image restoration tasks. However, existing methods are either computationally expensive or have limited receptive fields, adding constraints to the model. They are also less resilient in spatial and contextual aspects and lack pixel-to-pixel correspondence, which may degrade feature representations. In this paper, we propose a novel and computationally efficient architecture Single Stage Adaptive Multi-Attention Network (SSAMAN) for image restoration tasks, particularly for image denoising and image deblurring. SSAMAN efficiently addresses computational challenges and expands receptive fields, enhancing robustness in spatial and contextual feature representation. Its Adaptive Multi-Attention Module (AMAM), which consists of Adaptive Pixel Attention Branch (APAB) and an Adaptive Channel Attention Branch (ACAB), uniquely integrates channel and pixel-wise dimensions, significantly improving sensitivity to edges, shapes, and textures. We perform extensive experiments and ablation studies to validate the performance of SSAMAN. Our model shows state-of-the-art results on various benchmarks, for example, on image denoising tasks, SSAMAN achieves a notable 40.08 dB PSNR on SIDD dataset, outperforming Restormer by 0.06 dB PSNR, with 41.02% less computational cost, and achieves a 40.05 dB PSNR on the DND dataset. For image deblurring, SSAMAN achieves 33.53 dB PSNR on GoPro dataset. Code and models are available at Github.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尘南浔完成签到 ,获得积分10
刚刚
月亮明星完成签到,获得积分10
刚刚
Jasper应助einuo采纳,获得10
1秒前
1秒前
2秒前
科研小bai完成签到,获得积分10
2秒前
深情安青应助韭菜盒子采纳,获得10
2秒前
2秒前
Akim应助科研小白采纳,获得10
3秒前
Eric完成签到,获得积分10
3秒前
3秒前
Keep完成签到,获得积分20
3秒前
坚定的诗双完成签到,获得积分10
3秒前
耍酷激光豆完成签到,获得积分10
3秒前
thousandlong完成签到,获得积分10
4秒前
充电宝应助Maestro_S采纳,获得10
4秒前
4秒前
4秒前
dusai完成签到,获得积分10
4秒前
棟仔超人发布了新的文献求助10
4秒前
4秒前
5秒前
派大星和海绵宝宝完成签到,获得积分10
5秒前
HYLynn完成签到,获得积分10
6秒前
赘婿应助芋泥螺蛳猫采纳,获得10
7秒前
renjiu完成签到,获得积分10
7秒前
7秒前
rrr完成签到,获得积分10
7秒前
JACK完成签到,获得积分10
8秒前
科研欣路完成签到,获得积分10
8秒前
勿庸完成签到,获得积分10
8秒前
8秒前
王乐多完成签到 ,获得积分10
8秒前
锅里有两条鱼完成签到 ,获得积分10
8秒前
9秒前
姚断天发布了新的文献求助10
9秒前
CBY发布了新的文献求助10
9秒前
庞洋发布了新的文献求助10
9秒前
9秒前
hetao286发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740