Single Stage Adaptive Multi-Attention Network for Image Restoration

去模糊 计算机科学 人工智能 稳健性(进化) 图像复原 像素 特征(语言学) 模式识别(心理学) 计算机视觉 图像(数学) 图像处理 生物化学 化学 语言学 哲学 基因
作者
Anas Zafar,Danyal Aftab,Rizwan Qureshi,Xinqi Fan,Pingjun Chen,Jia Wu,Hazrat Ali,Shah Nawaz,Sheheryar Khan,Mubarak Shah
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 2924-2935 被引量:11
标识
DOI:10.1109/tip.2024.3384838
摘要

Recently attention-based networks have been successful for image restoration tasks. However, existing methods are either computationally expensive or have limited receptive fields, adding constraints to the model. They are also less resilient in spatial and contextual aspects and lack pixel-to-pixel correspondence, which may degrade feature representations. In this paper, we propose a novel and computationally efficient architecture Single Stage Adaptive Multi-Attention Network (SSAMAN) for image restoration tasks, particularly for image denoising and image deblurring. SSAMAN efficiently addresses computational challenges and expands receptive fields, enhancing robustness in spatial and contextual feature representation. Its Adaptive Multi-Attention Module (AMAM), which consists of Adaptive Pixel Attention Branch (APAB) and an Adaptive Channel Attention Branch (ACAB), uniquely integrates channel and pixel-wise dimensions, significantly improving sensitivity to edges, shapes, and textures. We perform extensive experiments and ablation studies to validate the performance of SSAMAN. Our model shows state-of-the-art results on various benchmarks, for example, on image denoising tasks, SSAMAN achieves a notable 40.08 dB PSNR on SIDD dataset, outperforming Restormer by 0.06 dB PSNR, with 41.02% less computational cost, and achieves a 40.05 dB PSNR on the DND dataset. For image deblurring, SSAMAN achieves 33.53 dB PSNR on GoPro dataset. Code and models are available at Github.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wanci应助v321采纳,获得10
刚刚
1秒前
dian应助科研通管家采纳,获得20
1秒前
ding应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
1秒前
hhh发布了新的文献求助10
1秒前
XDM发布了新的文献求助10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
2秒前
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
纯真的笑珊完成签到,获得积分10
2秒前
tuanhust应助许容采纳,获得20
2秒前
2秒前
2秒前
NexusExplorer应助白羽采纳,获得10
3秒前
3秒前
3秒前
orixero应助迷人问兰采纳,获得10
3秒前
天博发布了新的文献求助10
4秒前
carpediem发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
小豹子完成签到,获得积分10
5秒前
6秒前
zz发布了新的文献求助10
6秒前
6秒前
7秒前
沉静傲霜发布了新的文献求助30
7秒前
7秒前
8秒前
情怀应助雷行云采纳,获得10
8秒前
8秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951400
求助须知:如何正确求助?哪些是违规求助? 3496764
关于积分的说明 11084465
捐赠科研通 3227180
什么是DOI,文献DOI怎么找? 1784320
邀请新用户注册赠送积分活动 868350
科研通“疑难数据库(出版商)”最低求助积分说明 801110