Machine Learning for Road Vehicle Aerodynamics

空气动力学 计算机科学 汽车工程 航空学 航空航天工程 车辆动力学 工程类
作者
V. Ananthan,Neil Ashton,Nate Chadwick,Mariano Lizarraga,Danielle C. Maddix,Satheesh Maheswaran,Pablo Hermoso Moreno,Parisa M. Shabestari,Sandeep Sovani,Shreyas Subramanian,Srinivas Tadepalli,Peter T. Yu
出处
期刊:SAE technical paper series
标识
DOI:10.4271/2024-01-2529
摘要

<div class="section abstract"><div class="htmlview paragraph">This paper discusses an emerging area of applying machine learning (ML) methods to augment traditional Computational Fluid Dynamics (CFD) simulations of road vehicle aerodynamics. ML methods have the potential to both reduce the computational effort to predict a new geometry or car condition and to explore a greater number of design parameters with the same computational budget. Similar to traditional CFD methods, there exists a broad range of approaches. In particular, the accuracy and computational efficiency of a CFD simulation vary greatly depending on the choice of turbulence model (DNS, LES, RANS) and the underlying spatial and temporal numerical discretizations. Similarly, the end-user must select the correct ML method depending on the use-case, the available input data, and the trade-off between accuracy and computational cost. In this paper, we showcase several case studies using various data-driven ML methods to highlight the promise of these approaches. Whilst these case studies are not comprehensive investigations of the underlying methods and do not include all possible ML approaches (i.e., physics-driven), they highlight the ability of these models to in general predict new designs in near real-time (i.e., less than 5 seconds), after typically less than 1 hour of training on a single GPU. There still exists a need for high quality training data from traditional CFD methods and high-fidelity CFD simulations to validate the ML predictions. Thus, ML approaches should be seen as tools to augment traditional CFD methods rather than to replace them. While this work focuses on preliminary studies, future work will look at more comprehensive real-world/industrial-size calculations for the more promising technologies identified here.</div></div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wwww发布了新的文献求助10
刚刚
1秒前
星辰大海应助虾米吃螃蟹采纳,获得10
1秒前
NexusExplorer应助朴实的无极采纳,获得10
2秒前
谷雨应助努力的咩咩采纳,获得10
2秒前
2秒前
Andy发布了新的文献求助10
4秒前
4秒前
bkagyin应助毛线球球采纳,获得10
4秒前
天天快乐应助春风明月采纳,获得10
5秒前
yyy发布了新的文献求助10
6秒前
林安笙完成签到,获得积分10
6秒前
cau_zq发布了新的文献求助10
7秒前
李爱国应助义气语海采纳,获得10
7秒前
7秒前
科研通AI2S应助花成花采纳,获得10
8秒前
BareBear应助花成花采纳,获得10
8秒前
9秒前
11秒前
qing完成签到 ,获得积分10
12秒前
皮皮团完成签到 ,获得积分10
12秒前
12秒前
14秒前
调皮又蓝发布了新的文献求助30
15秒前
15秒前
16秒前
fabea完成签到,获得积分0
16秒前
17秒前
安静的十八完成签到,获得积分10
18秒前
共享精神应助小李采纳,获得10
18秒前
Rason发布了新的文献求助10
19秒前
柯镇恶完成签到,获得积分10
20秒前
飞快的甜瓜完成签到,获得积分20
20秒前
打打应助杨桃采纳,获得10
20秒前
纯真乐儿完成签到 ,获得积分10
21秒前
大禹发布了新的文献求助20
21秒前
隐形曼青应助追光者采纳,获得10
23秒前
维尼熊完成签到 ,获得积分10
26秒前
27秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588492
求助须知:如何正确求助?哪些是违规求助? 4671582
关于积分的说明 14787884
捐赠科研通 4625454
什么是DOI,文献DOI怎么找? 2531836
邀请新用户注册赠送积分活动 1500428
关于科研通互助平台的介绍 1468314