Machine Learning for Road Vehicle Aerodynamics

空气动力学 计算机科学 汽车工程 航空学 航空航天工程 车辆动力学 工程类
作者
V. Ananthan,Neil Ashton,Nate Chadwick,Mariano Lizarraga,Danielle C. Maddix,Satheesh Maheswaran,Pablo Hermoso Moreno,Parisa M. Shabestari,Sandeep Sovani,Shreyas Subramanian,Srinivas Tadepalli,Peter T. Yu
出处
期刊:SAE technical paper series
标识
DOI:10.4271/2024-01-2529
摘要

<div class="section abstract"><div class="htmlview paragraph">This paper discusses an emerging area of applying machine learning (ML) methods to augment traditional Computational Fluid Dynamics (CFD) simulations of road vehicle aerodynamics. ML methods have the potential to both reduce the computational effort to predict a new geometry or car condition and to explore a greater number of design parameters with the same computational budget. Similar to traditional CFD methods, there exists a broad range of approaches. In particular, the accuracy and computational efficiency of a CFD simulation vary greatly depending on the choice of turbulence model (DNS, LES, RANS) and the underlying spatial and temporal numerical discretizations. Similarly, the end-user must select the correct ML method depending on the use-case, the available input data, and the trade-off between accuracy and computational cost. In this paper, we showcase several case studies using various data-driven ML methods to highlight the promise of these approaches. Whilst these case studies are not comprehensive investigations of the underlying methods and do not include all possible ML approaches (i.e., physics-driven), they highlight the ability of these models to in general predict new designs in near real-time (i.e., less than 5 seconds), after typically less than 1 hour of training on a single GPU. There still exists a need for high quality training data from traditional CFD methods and high-fidelity CFD simulations to validate the ML predictions. Thus, ML approaches should be seen as tools to augment traditional CFD methods rather than to replace them. While this work focuses on preliminary studies, future work will look at more comprehensive real-world/industrial-size calculations for the more promising technologies identified here.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
dong完成签到,获得积分10
刚刚
1秒前
科研通AI5应助刘芸芸采纳,获得10
2秒前
baijiayi完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
song发布了新的文献求助10
3秒前
LEMON发布了新的文献求助10
4秒前
4秒前
Aha完成签到 ,获得积分10
4秒前
4秒前
乐乐应助狂野世立采纳,获得10
5秒前
yzz完成签到,获得积分10
5秒前
5秒前
SYLH应助曾水采纳,获得10
5秒前
5秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
陈佳琪发布了新的文献求助30
6秒前
思源应助科研通管家采纳,获得10
6秒前
6秒前
pluto应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
6秒前
田様应助科研通管家采纳,获得10
6秒前
单复天完成签到,获得积分10
7秒前
7秒前
jgy应助科研通管家采纳,获得30
7秒前
7秒前
大模型应助科研通管家采纳,获得10
7秒前
shouyu29应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762