Machine Learning for Road Vehicle Aerodynamics

空气动力学 计算机科学 汽车工程 航空学 航空航天工程 车辆动力学 工程类
作者
V. Ananthan,Neil Ashton,Nate Chadwick,Mariano Lizarraga,Danielle C. Maddix,Satheesh Maheswaran,Pablo Hermoso Moreno,Parisa M. Shabestari,Sandeep Sovani,Shreyas Subramanian,Srinivas Tadepalli,Peter T. Yu
出处
期刊:SAE technical paper series
标识
DOI:10.4271/2024-01-2529
摘要

<div class="section abstract"><div class="htmlview paragraph">This paper discusses an emerging area of applying machine learning (ML) methods to augment traditional Computational Fluid Dynamics (CFD) simulations of road vehicle aerodynamics. ML methods have the potential to both reduce the computational effort to predict a new geometry or car condition and to explore a greater number of design parameters with the same computational budget. Similar to traditional CFD methods, there exists a broad range of approaches. In particular, the accuracy and computational efficiency of a CFD simulation vary greatly depending on the choice of turbulence model (DNS, LES, RANS) and the underlying spatial and temporal numerical discretizations. Similarly, the end-user must select the correct ML method depending on the use-case, the available input data, and the trade-off between accuracy and computational cost. In this paper, we showcase several case studies using various data-driven ML methods to highlight the promise of these approaches. Whilst these case studies are not comprehensive investigations of the underlying methods and do not include all possible ML approaches (i.e., physics-driven), they highlight the ability of these models to in general predict new designs in near real-time (i.e., less than 5 seconds), after typically less than 1 hour of training on a single GPU. There still exists a need for high quality training data from traditional CFD methods and high-fidelity CFD simulations to validate the ML predictions. Thus, ML approaches should be seen as tools to augment traditional CFD methods rather than to replace them. While this work focuses on preliminary studies, future work will look at more comprehensive real-world/industrial-size calculations for the more promising technologies identified here.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉初瑶完成签到,获得积分10
刚刚
dtcao完成签到,获得积分20
刚刚
刚刚
阿西吧完成签到 ,获得积分10
刚刚
灰灰发布了新的文献求助10
1秒前
冷傲小小完成签到,获得积分10
1秒前
Adler完成签到,获得积分10
1秒前
1秒前
1秒前
专注的谷蓝完成签到,获得积分10
2秒前
深呼吸发布了新的文献求助10
2秒前
shanlu完成签到,获得积分10
2秒前
Orange应助繁星与北斗采纳,获得10
3秒前
3秒前
黄耀完成签到,获得积分10
3秒前
3秒前
abc1122完成签到,获得积分10
4秒前
wyh发布了新的文献求助10
4秒前
劣根完成签到,获得积分10
4秒前
何相逢完成签到,获得积分0
4秒前
LEE123完成签到,获得积分10
4秒前
感性的剑愁完成签到,获得积分10
5秒前
凉凉应助dtcao采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
卡卡西发布了新的文献求助10
5秒前
5秒前
长风与海浪完成签到 ,获得积分10
6秒前
MAOJCFK发布了新的文献求助10
7秒前
7秒前
faiting完成签到,获得积分10
7秒前
勤奋的天亦完成签到,获得积分10
7秒前
kiyo_v完成签到,获得积分10
7秒前
邓代容发布了新的文献求助10
8秒前
无私的芹应助yuelsy0117采纳,获得10
8秒前
ZHYChen完成签到,获得积分10
8秒前
huk发布了新的文献求助10
8秒前
ZJJ静完成签到,获得积分10
9秒前
董竹君完成签到,获得积分10
9秒前
俭朴的天曼完成签到,获得积分10
9秒前
Lucas应助顺心的翠丝采纳,获得10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015859
求助须知:如何正确求助?哪些是违规求助? 3555835
关于积分的说明 11318981
捐赠科研通 3288954
什么是DOI,文献DOI怎么找? 1812355
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027