Machine Learning for Road Vehicle Aerodynamics

空气动力学 计算机科学 汽车工程 航空学 航空航天工程 车辆动力学 工程类
作者
V. Ananthan,Neil Ashton,Nate Chadwick,Mariano Lizarraga,Danielle C. Maddix,Satheesh Maheswaran,Pablo Hermoso Moreno,Parisa M. Shabestari,Sandeep Sovani,Shreyas Subramanian,Srinivas Tadepalli,Peter T. Yu
出处
期刊:SAE technical paper series
标识
DOI:10.4271/2024-01-2529
摘要

<div class="section abstract"><div class="htmlview paragraph">This paper discusses an emerging area of applying machine learning (ML) methods to augment traditional Computational Fluid Dynamics (CFD) simulations of road vehicle aerodynamics. ML methods have the potential to both reduce the computational effort to predict a new geometry or car condition and to explore a greater number of design parameters with the same computational budget. Similar to traditional CFD methods, there exists a broad range of approaches. In particular, the accuracy and computational efficiency of a CFD simulation vary greatly depending on the choice of turbulence model (DNS, LES, RANS) and the underlying spatial and temporal numerical discretizations. Similarly, the end-user must select the correct ML method depending on the use-case, the available input data, and the trade-off between accuracy and computational cost. In this paper, we showcase several case studies using various data-driven ML methods to highlight the promise of these approaches. Whilst these case studies are not comprehensive investigations of the underlying methods and do not include all possible ML approaches (i.e., physics-driven), they highlight the ability of these models to in general predict new designs in near real-time (i.e., less than 5 seconds), after typically less than 1 hour of training on a single GPU. There still exists a need for high quality training data from traditional CFD methods and high-fidelity CFD simulations to validate the ML predictions. Thus, ML approaches should be seen as tools to augment traditional CFD methods rather than to replace them. While this work focuses on preliminary studies, future work will look at more comprehensive real-world/industrial-size calculations for the more promising technologies identified here.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
妉甛完成签到,获得积分10
1秒前
852应助yjj采纳,获得10
3秒前
顾矜应助霍志美采纳,获得10
3秒前
djyu发布了新的文献求助10
4秒前
4秒前
闻屿完成签到,获得积分10
4秒前
4秒前
科研通AI5应助QQ采纳,获得10
4秒前
4秒前
YuLu发布了新的文献求助10
5秒前
宇文一发布了新的文献求助10
5秒前
xiaoju发布了新的文献求助10
5秒前
贰拾-2完成签到,获得积分10
5秒前
5秒前
FashionBoy应助快乐二方采纳,获得10
6秒前
烟花发布了新的文献求助10
6秒前
善学以致用应助cencen采纳,获得10
7秒前
orixero应助KON采纳,获得10
7秒前
LYY发布了新的文献求助10
8秒前
蓝多多发布了新的文献求助10
8秒前
善学以致用应助追光少年采纳,获得10
8秒前
储祥群完成签到,获得积分10
8秒前
wanci应助jack采纳,获得10
9秒前
星辰大海应助最长的旅途采纳,获得10
9秒前
QQ完成签到,获得积分10
9秒前
9秒前
meng完成签到,获得积分10
9秒前
柒柒完成签到,获得积分10
9秒前
chengli发布了新的文献求助10
10秒前
传统的夜南完成签到,获得积分10
10秒前
10秒前
火乐完成签到 ,获得积分10
10秒前
我是老大应助高高采纳,获得10
11秒前
星辰大海应助luo采纳,获得10
11秒前
11秒前
超级无敌学术苦瓜完成签到,获得积分20
11秒前
zcl应助谌丽华采纳,获得20
11秒前
科研通AI6应助祁尒采纳,获得10
12秒前
12秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206131
求助须知:如何正确求助?哪些是违规求助? 4384653
关于积分的说明 13654174
捐赠科研通 4242976
什么是DOI,文献DOI怎么找? 2327791
邀请新用户注册赠送积分活动 1325532
关于科研通互助平台的介绍 1277639