已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning for Road Vehicle Aerodynamics

空气动力学 计算机科学 汽车工程 航空学 航空航天工程 车辆动力学 工程类
作者
V. Ananthan,Neil Ashton,Nate Chadwick,Mariano Lizarraga,Danielle C. Maddix,Satheesh Maheswaran,Pablo Hermoso Moreno,Parisa M. Shabestari,Sandeep Sovani,Shreyas Subramanian,Srinivas Tadepalli,Peter T. Yu
出处
期刊:SAE technical paper series
标识
DOI:10.4271/2024-01-2529
摘要

<div class="section abstract"><div class="htmlview paragraph">This paper discusses an emerging area of applying machine learning (ML) methods to augment traditional Computational Fluid Dynamics (CFD) simulations of road vehicle aerodynamics. ML methods have the potential to both reduce the computational effort to predict a new geometry or car condition and to explore a greater number of design parameters with the same computational budget. Similar to traditional CFD methods, there exists a broad range of approaches. In particular, the accuracy and computational efficiency of a CFD simulation vary greatly depending on the choice of turbulence model (DNS, LES, RANS) and the underlying spatial and temporal numerical discretizations. Similarly, the end-user must select the correct ML method depending on the use-case, the available input data, and the trade-off between accuracy and computational cost. In this paper, we showcase several case studies using various data-driven ML methods to highlight the promise of these approaches. Whilst these case studies are not comprehensive investigations of the underlying methods and do not include all possible ML approaches (i.e., physics-driven), they highlight the ability of these models to in general predict new designs in near real-time (i.e., less than 5 seconds), after typically less than 1 hour of training on a single GPU. There still exists a need for high quality training data from traditional CFD methods and high-fidelity CFD simulations to validate the ML predictions. Thus, ML approaches should be seen as tools to augment traditional CFD methods rather than to replace them. While this work focuses on preliminary studies, future work will look at more comprehensive real-world/industrial-size calculations for the more promising technologies identified here.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yanuo发布了新的文献求助50
刚刚
cardioJA完成签到 ,获得积分10
2秒前
大气怜南完成签到,获得积分10
2秒前
3秒前
4秒前
任性从梦完成签到,获得积分10
5秒前
芋泥泥泥完成签到,获得积分10
5秒前
Wilddeer完成签到 ,获得积分10
6秒前
7秒前
注恤明完成签到,获得积分10
7秒前
尾状叶完成签到 ,获得积分10
8秒前
9秒前
岂有此李完成签到,获得积分10
9秒前
廷聿完成签到,获得积分10
10秒前
斯文败类应助jieni采纳,获得10
10秒前
10秒前
yue发布了新的文献求助10
11秒前
廷聿发布了新的文献求助10
13秒前
丘比特应助曦晨采纳,获得10
13秒前
13秒前
大胆的白卉完成签到 ,获得积分10
14秒前
Lucky完成签到 ,获得积分10
14秒前
爱宁发布了新的文献求助10
14秒前
loopy完成签到 ,获得积分10
15秒前
666完成签到 ,获得积分10
16秒前
友好凌柏完成签到 ,获得积分10
16秒前
Youngboom完成签到 ,获得积分10
17秒前
18秒前
lsc发布了新的文献求助10
18秒前
20秒前
chcmuer发布了新的文献求助30
21秒前
23秒前
Hello应助廷聿采纳,获得10
23秒前
24秒前
lmj完成签到,获得积分10
25秒前
Eric_Liuzy发布了新的文献求助10
25秒前
Lyon完成签到 ,获得积分10
26秒前
26秒前
古风完成签到 ,获得积分10
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462934
求助须知:如何正确求助?哪些是违规求助? 4567758
关于积分的说明 14311405
捐赠科研通 4493564
什么是DOI,文献DOI怎么找? 2461752
邀请新用户注册赠送积分活动 1450823
关于科研通互助平台的介绍 1425954