Machine Learning for Road Vehicle Aerodynamics

空气动力学 计算机科学 汽车工程 航空学 航空航天工程 车辆动力学 工程类
作者
V. Ananthan,Neil Ashton,Nate Chadwick,Mariano Lizarraga,Danielle C. Maddix,Satheesh Maheswaran,Pablo Hermoso Moreno,Parisa M. Shabestari,Sandeep Sovani,Shreyas Subramanian,Srinivas Tadepalli,Peter T. Yu
出处
期刊:SAE technical paper series
标识
DOI:10.4271/2024-01-2529
摘要

<div class="section abstract"><div class="htmlview paragraph">This paper discusses an emerging area of applying machine learning (ML) methods to augment traditional Computational Fluid Dynamics (CFD) simulations of road vehicle aerodynamics. ML methods have the potential to both reduce the computational effort to predict a new geometry or car condition and to explore a greater number of design parameters with the same computational budget. Similar to traditional CFD methods, there exists a broad range of approaches. In particular, the accuracy and computational efficiency of a CFD simulation vary greatly depending on the choice of turbulence model (DNS, LES, RANS) and the underlying spatial and temporal numerical discretizations. Similarly, the end-user must select the correct ML method depending on the use-case, the available input data, and the trade-off between accuracy and computational cost. In this paper, we showcase several case studies using various data-driven ML methods to highlight the promise of these approaches. Whilst these case studies are not comprehensive investigations of the underlying methods and do not include all possible ML approaches (i.e., physics-driven), they highlight the ability of these models to in general predict new designs in near real-time (i.e., less than 5 seconds), after typically less than 1 hour of training on a single GPU. There still exists a need for high quality training data from traditional CFD methods and high-fidelity CFD simulations to validate the ML predictions. Thus, ML approaches should be seen as tools to augment traditional CFD methods rather than to replace them. While this work focuses on preliminary studies, future work will look at more comprehensive real-world/industrial-size calculations for the more promising technologies identified here.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小陈要发SCI完成签到 ,获得积分10
刚刚
yanna发布了新的文献求助10
1秒前
Owen应助奇奇吃面采纳,获得10
2秒前
霸气的千愁完成签到,获得积分10
3秒前
YC完成签到,获得积分10
3秒前
梦梦完成签到 ,获得积分10
3秒前
深情安青应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
安静幻枫完成签到,获得积分10
5秒前
6秒前
吼吼吼吼发布了新的文献求助10
7秒前
7秒前
8秒前
科研通AI2S应助周周采纳,获得30
8秒前
在水一方应助周周采纳,获得30
8秒前
10秒前
Stove完成签到,获得积分10
11秒前
12秒前
cc951229发布了新的文献求助10
13秒前
Judy完成签到 ,获得积分10
15秒前
时生111完成签到 ,获得积分10
15秒前
HXL完成签到 ,获得积分10
15秒前
静谧180发布了新的文献求助10
16秒前
yi完成签到,获得积分10
17秒前
wan完成签到 ,获得积分10
21秒前
琉璃苣应助11632采纳,获得10
21秒前
英姑应助过儿采纳,获得10
24秒前
cc951229完成签到,获得积分10
25秒前
25秒前
26秒前
26秒前
咩咩完成签到 ,获得积分10
27秒前
Junsir发布了新的文献求助10
31秒前
lyp完成签到 ,获得积分10
31秒前
35秒前
凡人完成签到,获得积分10
36秒前
36秒前
过儿完成签到,获得积分10
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137627
求助须知:如何正确求助?哪些是违规求助? 2788531
关于积分的说明 7787471
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300119
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023