Identification of CT radiomic features robust to acquisition and segmentation variations for improved prediction of radiotherapy-treated lung cancer patient recurrence

肺癌 放射治疗 鉴定(生物学) 无线电技术 分割 放射科 医学 人工智能 计算机科学 医学物理学 模式识别(心理学) 肿瘤科 生物 植物
作者
Thomas Louis,François Lucia,François Cousin,Carole Mievis,Nicolas Jansen,Bernard Duysinx,Romain Le Pennec,Dimitris Visvikis,Malik Nebbache,Matilda Rehn,Mohamed Hamya,M. Geier,Pierre-Yves Salaün,Ulrike Schick,Mathieu Hatt,Philippe Coucke,Pierre Lovinfosse,Roland Hustinx
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-58551-4
摘要

The primary objective of the present study was to identify a subset of radiomic features extracted from primary tumor imaged by computed tomography of early-stage non-small cell lung cancer patients, which remain unaffected by variations in segmentation quality and in computed tomography image acquisition protocol. The robustness of these features to segmentation variations was assessed by analyzing the correlation of feature values extracted from lesion volumes delineated by two annotators. The robustness to variations in acquisition protocol was evaluated by examining the correlation of features extracted from high-dose and low-dose computed tomography scans, both of which were acquired for each patient as part of the stereotactic body radiotherapy planning process. Among 106 radiomic features considered, 21 were identified as robust. An analysis including univariate and multivariate assessments was subsequently conducted to estimate the predictive performance of these robust features on the outcome of early-stage non-small cell lung cancer patients treated with stereotactic body radiation therapy. The univariate predictive analysis revealed that robust features demonstrated superior predictive potential compared to non-robust features. The multivariate analysis indicated that linear regression models built with robust features displayed greater generalization capabilities by outperforming other models in predicting the outcomes of an external validation dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助FANPP采纳,获得10
刚刚
刚刚
123发布了新的文献求助10
1秒前
1秒前
2秒前
糖炒栗子发布了新的文献求助10
2秒前
神外第一刀完成签到,获得积分10
2秒前
lizhaoyu完成签到,获得积分10
3秒前
bai发布了新的文献求助10
3秒前
大个应助wang1343259150采纳,获得10
3秒前
zgt01发布了新的文献求助10
3秒前
4秒前
长街发布了新的文献求助10
4秒前
4秒前
琉璃琨琨完成签到,获得积分10
5秒前
5秒前
lww完成签到,获得积分10
5秒前
xuhang发布了新的文献求助10
5秒前
今后应助ziming313采纳,获得10
6秒前
王树茂完成签到,获得积分10
6秒前
6秒前
Wen3197312602发布了新的文献求助10
6秒前
柴夫完成签到,获得积分10
6秒前
我是老大应助yangfeidong采纳,获得10
7秒前
XIAOWANG发布了新的文献求助10
7秒前
8秒前
牛牛牛完成签到,获得积分10
8秒前
121212发布了新的文献求助10
9秒前
无花果应助YiYi采纳,获得10
9秒前
阿拉发布了新的文献求助10
10秒前
10秒前
浮光完成签到,获得积分20
10秒前
10秒前
NexusExplorer应助长街采纳,获得10
11秒前
11秒前
情怀应助棋士采纳,获得10
12秒前
犹豫的水桃完成签到,获得积分10
12秒前
小马甲应助sigla采纳,获得10
12秒前
12秒前
俊逸海豚发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954647
求助须知:如何正确求助?哪些是违规求助? 3500801
关于积分的说明 11101075
捐赠科研通 3231264
什么是DOI,文献DOI怎么找? 1786399
邀请新用户注册赠送积分活动 869980
科研通“疑难数据库(出版商)”最低求助积分说明 801751