Identification of CT radiomic features robust to acquisition and segmentation variations for improved prediction of radiotherapy-treated lung cancer patient recurrence

肺癌 放射治疗 鉴定(生物学) 无线电技术 分割 放射科 医学 人工智能 计算机科学 医学物理学 模式识别(心理学) 肿瘤科 生物 植物
作者
Thomas Louis,François Lucia,François Cousin,Carole Mievis,Nicolas Jansen,Bernard Duysinx,Romain Le Pennec,Dimitris Visvikis,Malik Nebbache,Matilda Rehn,Mohamed Hamya,M. Geier,Pierre-Yves Salaün,Ulrike Schick,Mathieu Hatt,Philippe Coucke,Pierre Lovinfosse,Roland Hustinx
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-58551-4
摘要

The primary objective of the present study was to identify a subset of radiomic features extracted from primary tumor imaged by computed tomography of early-stage non-small cell lung cancer patients, which remain unaffected by variations in segmentation quality and in computed tomography image acquisition protocol. The robustness of these features to segmentation variations was assessed by analyzing the correlation of feature values extracted from lesion volumes delineated by two annotators. The robustness to variations in acquisition protocol was evaluated by examining the correlation of features extracted from high-dose and low-dose computed tomography scans, both of which were acquired for each patient as part of the stereotactic body radiotherapy planning process. Among 106 radiomic features considered, 21 were identified as robust. An analysis including univariate and multivariate assessments was subsequently conducted to estimate the predictive performance of these robust features on the outcome of early-stage non-small cell lung cancer patients treated with stereotactic body radiation therapy. The univariate predictive analysis revealed that robust features demonstrated superior predictive potential compared to non-robust features. The multivariate analysis indicated that linear regression models built with robust features displayed greater generalization capabilities by outperforming other models in predicting the outcomes of an external validation dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21完成签到 ,获得积分10
1秒前
尹俊采完成签到,获得积分10
2秒前
科研通AI2S应助稳重的秋天采纳,获得10
3秒前
NexusExplorer应助cpli采纳,获得10
4秒前
4秒前
懵懂的依秋完成签到 ,获得积分10
5秒前
科研通AI2S应助太渊采纳,获得10
6秒前
俏皮白云完成签到 ,获得积分10
7秒前
7秒前
Ramer556完成签到,获得积分10
7秒前
洋洋洋耶完成签到,获得积分10
8秒前
搜集达人应助qq采纳,获得10
9秒前
9秒前
大喵发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
喜宝完成签到 ,获得积分10
11秒前
HonglinGao发布了新的文献求助10
11秒前
早日毕业佳完成签到,获得积分10
12秒前
545完成签到,获得积分10
12秒前
12秒前
12秒前
14秒前
15秒前
qin希望应助张喻235532采纳,获得10
15秒前
大喵完成签到,获得积分10
16秒前
545发布了新的文献求助10
16秒前
SYT发布了新的文献求助10
16秒前
ZYYYY发布了新的文献求助30
17秒前
吴博文发布了新的文献求助10
18秒前
阿巴完成签到 ,获得积分10
18秒前
希文完成签到,获得积分10
20秒前
含糊的文涛完成签到,获得积分20
21秒前
史一豆完成签到 ,获得积分10
23秒前
霁昕完成签到 ,获得积分10
25秒前
25秒前
纷花雨完成签到,获得积分10
26秒前
26秒前
吴博文完成签到,获得积分10
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143779
求助须知:如何正确求助?哪些是违规求助? 2795335
关于积分的说明 7814327
捐赠科研通 2451315
什么是DOI,文献DOI怎么找? 1304413
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601419