Deep Learning-Driven Sentiment Analysis in Textual Data

情绪分析 计算机科学 人工智能 深度学习 自然语言处理 数据科学
作者
M. Kathiravan,S. Saravanan,M. Jagadeesh,I. Lakshmi,V. Sathya Durga,N. Bharathiraja
标识
DOI:10.1109/ic2pct60090.2024.10486431
摘要

Emotional recognition from text is essential in natural language processing with far-reaching consequences in areas such as Artificial Intelligence, Human-Computer Interaction, and others. Emotions are felt, thought-out physical responses to events. Analyzing these feelings independently of vocal and facial cues is critical to interpreting emotions. Despite these challenges, it is crucial to understand human emotions, especially as people become more comfortable expressing themselves through hate speech on sites like Facebook, Twitter, etc. This paper discusses how to classify many tweets based on their tone. Here, we use deep learning algorithms to determine whether an expression means a happy or sad emotion. There are four distinct negative states of mind: rage, indifference, loneliness, disdain, sadness, and despair. The subset of positive emotions includes zeal, joy, happiness, love, calm, pleasure, and wonder. Using three datasets, we validated and assessed the method's use of long short-term memory and recurrent neural networks to obtain high accuracy in emotion categorization. With an 85.07% predictability for positive and negative classification and an 87.23% and 86.3% accuracy for positive and negative subclasses, respectively, a detailed examination reveals that the system improves emotion prediction using the LSTM model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昵称完成签到,获得积分20
1秒前
奋斗的小笼包完成签到 ,获得积分10
1秒前
深情安青应助机智楼房采纳,获得30
2秒前
redamancy完成签到 ,获得积分10
2秒前
orixero应助旺仔采纳,获得10
2秒前
3秒前
饱满含玉完成签到,获得积分10
3秒前
雯雯完成签到,获得积分10
3秒前
3秒前
彭于晏应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得30
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
5秒前
HongJiang发布了新的文献求助10
5秒前
竹萱发布了新的文献求助10
8秒前
莉莉发布了新的文献求助10
8秒前
鳗鱼忆山完成签到 ,获得积分10
9秒前
10秒前
王玖发布了新的文献求助10
10秒前
善学以致用应助昵称采纳,获得10
11秒前
旺仔发布了新的文献求助10
14秒前
朱大头完成签到,获得积分10
16秒前
18秒前
txyouniverse完成签到 ,获得积分10
20秒前
漂亮的鸡发布了新的文献求助10
21秒前
wangjue完成签到,获得积分10
21秒前
21秒前
lsn发布了新的文献求助10
22秒前
Jasper应助Zephyr采纳,获得10
23秒前
852应助雅雅采纳,获得10
24秒前
咱不吃葱完成签到,获得积分10
25秒前
26秒前
28秒前
隐形曼青应助CCCr采纳,获得10
28秒前
听话的蜡烛完成签到,获得积分10
29秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346174
求助须知:如何正确求助?哪些是违规求助? 2972939
关于积分的说明 8657179
捐赠科研通 2653379
什么是DOI,文献DOI怎么找? 1453124
科研通“疑难数据库(出版商)”最低求助积分说明 672752
邀请新用户注册赠送积分活动 662614