已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-level thresholding segmentation for pathological images: Optimal performance design of a new modified differential evolution

分割 阈值 计算机科学 水准点(测量) 人工智能 差异进化 计算机视觉 模式识别(心理学) 图像分割 图像(数学) 大地测量学 地理
作者
Lili Ren,Dong Zhao,Xuehua Zhao,Weibin Chen,Lingzhi Li,TaiSong Wu,Guoxi Liang,Zhennao Cai,Suling Xu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:148: 105910-105910 被引量:40
标识
DOI:10.1016/j.compbiomed.2022.105910
摘要

The effective analytical processing of pathological images is crucial in promoting the development of medical diagnostics. Based on this matter, in this research, a multi-level thresholding segmentation (MLTS) method based on modified different evolution (MDE) is proposed. The MDE is the primary benefit offered by the suggested MLTS technique, which is a novel proposed evolutionary algorithm in this article with significant convergence accuracy and the capability to leap out of the local optimum (LO). This optimizer came into being mostly as a result of the incorporation of the movement mechanisms of white holes, black holes, and wormholes into various evolutions. Thus, the developed MLTS approach may provide high-quality segmentation results and is less susceptible to segmentation process stagnation. To validate the efficacy of the presented approaches, first, the performance of MDE is validated using 30 benchmark functions, and then the proposed segmentation method is empirically compared with other comparable methods using standard pictures. On the basis of breast cancer and skin cancer pathology images, the developed segmentation method is compared to other competing methods and experimentally validated in further detail. By analyzing experimental data, the key compensations of MDE are proven, and it is experimentally shown that the unique MDE-based MLTS approach can achieve good performance in terms of many performance assessment indices. Consequently, the proposed method may offer an efficient segmentation procedure for pathological medical images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc应助诚心山芙采纳,获得10
1秒前
2秒前
NexusExplorer应助pin采纳,获得10
2秒前
儒雅的十八完成签到,获得积分10
2秒前
dogontree发布了新的文献求助10
4秒前
8秒前
pass完成签到 ,获得积分10
9秒前
10秒前
Skywalker发布了新的文献求助10
13秒前
14秒前
sxwzssyj完成签到,获得积分10
14秒前
SiboN完成签到,获得积分10
15秒前
16秒前
16秒前
18秒前
老金金发布了新的文献求助10
21秒前
mdjinij发布了新的文献求助10
21秒前
24秒前
汝桢发布了新的文献求助10
29秒前
隐形曼青应助肯瑞恩哭哭采纳,获得10
32秒前
所所应助科研通管家采纳,获得30
33秒前
华仔应助科研通管家采纳,获得10
33秒前
乐乐应助科研通管家采纳,获得10
33秒前
科研通AI6应助科研通管家采纳,获得10
33秒前
浮游应助科研通管家采纳,获得10
33秒前
33秒前
花呗发布了新的文献求助10
34秒前
老金金完成签到,获得积分10
35秒前
41秒前
Yilam完成签到,获得积分10
41秒前
44秒前
Akim应助dogontree采纳,获得10
46秒前
隐形曼青应助甜蜜发带采纳,获得10
46秒前
科研小白完成签到,获得积分10
46秒前
咸鸭蛋完成签到 ,获得积分10
51秒前
外向又菱发布了新的文献求助10
51秒前
53秒前
cr完成签到 ,获得积分10
54秒前
55秒前
葉鳳怡完成签到 ,获得积分10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253316
求助须知:如何正确求助?哪些是违规求助? 4416731
关于积分的说明 13750447
捐赠科研通 4289094
什么是DOI,文献DOI怎么找? 2353235
邀请新用户注册赠送积分活动 1349978
关于科研通互助平台的介绍 1309772