Multi-level thresholding segmentation for pathological images: Optimal performance design of a new modified differential evolution

分割 阈值 计算机科学 水准点(测量) 人工智能 差异进化 计算机视觉 模式识别(心理学) 图像分割 图像(数学) 大地测量学 地理
作者
Lili Ren,Dong Zhao,Xuehua Zhao,Weibin Chen,Lingzhi Li,TaiSong Wu,Guoxi Liang,Zhennao Cai,Suling Xu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:148: 105910-105910 被引量:40
标识
DOI:10.1016/j.compbiomed.2022.105910
摘要

The effective analytical processing of pathological images is crucial in promoting the development of medical diagnostics. Based on this matter, in this research, a multi-level thresholding segmentation (MLTS) method based on modified different evolution (MDE) is proposed. The MDE is the primary benefit offered by the suggested MLTS technique, which is a novel proposed evolutionary algorithm in this article with significant convergence accuracy and the capability to leap out of the local optimum (LO). This optimizer came into being mostly as a result of the incorporation of the movement mechanisms of white holes, black holes, and wormholes into various evolutions. Thus, the developed MLTS approach may provide high-quality segmentation results and is less susceptible to segmentation process stagnation. To validate the efficacy of the presented approaches, first, the performance of MDE is validated using 30 benchmark functions, and then the proposed segmentation method is empirically compared with other comparable methods using standard pictures. On the basis of breast cancer and skin cancer pathology images, the developed segmentation method is compared to other competing methods and experimentally validated in further detail. By analyzing experimental data, the key compensations of MDE are proven, and it is experimentally shown that the unique MDE-based MLTS approach can achieve good performance in terms of many performance assessment indices. Consequently, the proposed method may offer an efficient segmentation procedure for pathological medical images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yxy发布了新的文献求助10
1秒前
益生菌发布了新的文献求助10
1秒前
踏实的酸奶完成签到,获得积分10
1秒前
Coldpal完成签到,获得积分10
1秒前
虎啊虎啊发布了新的文献求助10
1秒前
ljl完成签到,获得积分10
1秒前
lalala完成签到,获得积分20
1秒前
ybb完成签到,获得积分10
1秒前
球球了完成签到,获得积分10
2秒前
青易发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
小海发布了新的文献求助10
3秒前
joysa完成签到,获得积分10
4秒前
Jasper应助余生采纳,获得10
4秒前
yiyi完成签到,获得积分10
4秒前
Georges-09完成签到,获得积分10
4秒前
爱因斯宣发布了新的文献求助10
4秒前
谦让的莆完成签到 ,获得积分10
5秒前
5秒前
苏silence发布了新的文献求助10
6秒前
6秒前
科研小土豆完成签到,获得积分10
8秒前
小金鱼儿完成签到,获得积分10
8秒前
Danielle完成签到,获得积分10
8秒前
Paddi完成签到,获得积分10
9秒前
9秒前
Sxq完成签到,获得积分10
9秒前
liuhuo完成签到,获得积分10
9秒前
虎啊虎啊完成签到,获得积分10
9秒前
小海完成签到,获得积分10
10秒前
思源应助任冰冰采纳,获得30
10秒前
完美的凡灵完成签到,获得积分10
10秒前
11秒前
4564321发布了新的文献求助10
11秒前
12秒前
草莓布丁发布了新的文献求助10
12秒前
科目三应助徐佳达采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986586
求助须知:如何正确求助?哪些是违规求助? 3529069
关于积分的说明 11242999
捐赠科研通 3267514
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881175
科研通“疑难数据库(出版商)”最低求助积分说明 808582