Multi-level thresholding segmentation for pathological images: Optimal performance design of a new modified differential evolution

分割 阈值 计算机科学 水准点(测量) 人工智能 差异进化 计算机视觉 模式识别(心理学) 图像分割 图像(数学) 大地测量学 地理
作者
Lili Ren,Dong Zhao,Xuehua Zhao,Weibin Chen,Lingzhi Li,TaiSong Wu,Guoxi Liang,Zhennao Cai,Suling Xu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:148: 105910-105910 被引量:40
标识
DOI:10.1016/j.compbiomed.2022.105910
摘要

The effective analytical processing of pathological images is crucial in promoting the development of medical diagnostics. Based on this matter, in this research, a multi-level thresholding segmentation (MLTS) method based on modified different evolution (MDE) is proposed. The MDE is the primary benefit offered by the suggested MLTS technique, which is a novel proposed evolutionary algorithm in this article with significant convergence accuracy and the capability to leap out of the local optimum (LO). This optimizer came into being mostly as a result of the incorporation of the movement mechanisms of white holes, black holes, and wormholes into various evolutions. Thus, the developed MLTS approach may provide high-quality segmentation results and is less susceptible to segmentation process stagnation. To validate the efficacy of the presented approaches, first, the performance of MDE is validated using 30 benchmark functions, and then the proposed segmentation method is empirically compared with other comparable methods using standard pictures. On the basis of breast cancer and skin cancer pathology images, the developed segmentation method is compared to other competing methods and experimentally validated in further detail. By analyzing experimental data, the key compensations of MDE are proven, and it is experimentally shown that the unique MDE-based MLTS approach can achieve good performance in terms of many performance assessment indices. Consequently, the proposed method may offer an efficient segmentation procedure for pathological medical images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
信息学完成签到,获得积分10
刚刚
1秒前
云哈哈发布了新的文献求助10
1秒前
火星上惜天完成签到 ,获得积分10
1秒前
scott910806发布了新的文献求助10
1秒前
2秒前
2秒前
情怀应助小粥采纳,获得10
3秒前
靓丽镜子发布了新的文献求助30
3秒前
3秒前
4秒前
pitto完成签到,获得积分10
4秒前
4秒前
keanu完成签到,获得积分10
4秒前
5秒前
拼搏小猫完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
em0应助艾弗里采纳,获得10
6秒前
怕孤单的茹嫣完成签到,获得积分10
7秒前
7秒前
火星上的英姑完成签到,获得积分10
7秒前
逆麟发布了新的文献求助10
7秒前
Akim应助DKW采纳,获得10
7秒前
微笑驳发布了新的文献求助10
7秒前
7秒前
烟花应助LRX采纳,获得10
8秒前
8秒前
zzz完成签到,获得积分10
8秒前
充电宝应助陌路孤星采纳,获得10
8秒前
8秒前
9秒前
我是老大应助Gavin采纳,获得10
9秒前
9秒前
华仔应助高文雅采纳,获得10
9秒前
鲤鱼凛发布了新的文献求助10
10秒前
10秒前
生鱼安乐完成签到,获得积分10
11秒前
开朗的早晨完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435610
求助须知:如何正确求助?哪些是违规求助? 4547679
关于积分的说明 14210287
捐赠科研通 4467942
什么是DOI,文献DOI怎么找? 2448805
邀请新用户注册赠送积分活动 1439683
关于科研通互助平台的介绍 1416287