Data-driven prediction of building energy consumption using an adaptive multi-model fusion approach

计算机科学 聚类分析 标杆管理 能源消耗 数据挖掘 均方误差 能量(信号处理) 匹配(统计) 传感器融合 融合 过程(计算) 人工智能 机器学习 统计 数学 生态学 语言学 哲学 生物 操作系统 营销 业务
作者
Penghui Lin,Limao Zhang,Jian Zuo
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:129: 109616-109616 被引量:9
标识
DOI:10.1016/j.asoc.2022.109616
摘要

This paper develops an adaptive multi-model fusion approach to predict building energy consumption, aiming to give useful suggestions for better energy control. The building energy benchmarking dataset of Chicago in 2017 is selected as the case study, where 9 features are selected as the input variables aiming to estimate the weather normalized site energy use intensity of buildings. The training dataset is clustered using the K-means algorithm and sub-models are trained based on the clustered data using the XGBoost algorithm. The sub-models are then fused by assigning a weight considering both the model reliability and the matching degree and adopting a screening algorithm to weed out the unmatching sub-models, where the influence of the threshold in the screening algorithm is studied. The root mean square error of the estimation results from a fused model is found to be 13.42 which achieves a 7.6% amelioration compared with a single model. Moreover, the adaptive multi-model fusion approach is also proved to outperform both the two-stage clustering-based regression method and the linear fusion method. Benefiting from proper treatment of samples in the fuzzy zones between clusters and the screening algorithm in the fusion process, the method proposed in our paper eventually serves as more advanced guidance in the analysis and control of building energy performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
上官若男应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
云海发布了新的文献求助10
刚刚
田様应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
HaonanZhang应助科研通管家采纳,获得10
1秒前
1秒前
xzy998应助科研通管家采纳,获得10
1秒前
Yuna应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
Allen0520完成签到,获得积分10
2秒前
Akim应助七秒鱼采纳,获得10
4秒前
5秒前
gq100520发布了新的文献求助10
7秒前
专注的怜容完成签到 ,获得积分20
9秒前
9秒前
jc哥发布了新的文献求助10
12秒前
田様应助luckypig采纳,获得10
12秒前
调皮剑鬼发布了新的文献求助10
12秒前
蒋蒋完成签到 ,获得积分10
13秒前
FRANKFANG完成签到,获得积分20
14秒前
慕青应助5433采纳,获得10
14秒前
搜集达人应助满意麦片采纳,获得10
15秒前
在水一方应助调皮剑鬼采纳,获得10
17秒前
yyanxuemin919发布了新的文献求助10
18秒前
Ava应助研究生小李采纳,获得10
22秒前
隐形曼青应助高风亮节采纳,获得10
24秒前
25秒前
小蘑菇应助zhoupeng采纳,获得20
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560014
求助须知:如何正确求助?哪些是违规求助? 4645187
关于积分的说明 14674421
捐赠科研通 4586310
什么是DOI,文献DOI怎么找? 2516345
邀请新用户注册赠送积分活动 1490000
关于科研通互助平台的介绍 1460841