亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Pan-Sharpening Framework Based on Multiscale Entropy Level Matching and Its Application

锐化 计算机科学 多光谱图像 图像融合 熵(时间箭头) 图像分辨率 人工智能 转化(遗传学) 计算机视觉 遥感 图像(数学) 生物化学 量子力学 基因 物理 地质学 化学
作者
Jingzhe Tao,Chuanming Song,Derui Song,Xianghai Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-21 被引量:4
标识
DOI:10.1109/tgrs.2022.3198097
摘要

Current remote sensing hardware technology is not yet able to acquire multiband remote sensing images with both high spatial and spectral resolution. As an important tool to compensate for the lack of spatial information acquisition of multispectral (MS) images, pan-sharpening has been an important and continuously active research area in remote sensing image processing. Although many methods have emerged, the problem of how to obtain high spatial resolution while effectively maintaining the spectral information of MS images has not been well solved. Many aspects still need further research. In this article, we first investigate the essential properties and rationality of two common framework types in the multiresolution analysis (MRA) sharpening method of pan-sharpening from the source perspective—the identical-resolution framework (IRF) derived from the generalized fusion application and the different-resolution framework (DRF) exclusive to the sharpening application, and show that the core difference between the two frameworks lies in the different ideas of utilizing the multiscale transformation, i.e., they tend to expand the scale space and model the spatially blurred degradation relationship between the sources, respectively. Both of them have their own advantages and disadvantages in handling detailed information, and neither of them can effectively deal with the "detail exclusivity" problem. Based on this, the idea of "entropy level matching" (ELM) of pan-sharpening is presented, and a comprehensive framework that can combine the advantages of the two types of frameworks is constructed, namely, the multiscale ELM framework. Furthermore, as an application of this framework, we propose a sharpening method shearlet transform-based entropy matching (STEM) built on the nonsubsampled shearlet as a multiscale transformation method. According to the difference in detail injection mode in it, it can be further divided into two sharpening methods based on additive mode and substitutive mode. The comparison experiments with 11 popular methods show that the proposed two sharpening methods can effectively improve the spatial resolution of MS images while keeping the spectral information well, and the comprehensive performance advantage is obvious. The source code of the proposed method can be downloaded from https://github.com/JZ-Tao/STEM/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
susu发布了新的文献求助10
2秒前
dcy完成签到,获得积分10
4秒前
沧海静音发布了新的文献求助10
5秒前
科目三应助gym采纳,获得10
5秒前
6秒前
糊涂的笑天完成签到 ,获得积分10
7秒前
wyh发布了新的文献求助10
7秒前
小马哥完成签到,获得积分10
9秒前
嵇元容发布了新的文献求助10
10秒前
susu完成签到,获得积分20
11秒前
陈末应助study1111采纳,获得10
12秒前
新123完成签到,获得积分10
12秒前
wyh完成签到,获得积分10
12秒前
充电宝应助wyh采纳,获得10
18秒前
Hello应助susu采纳,获得10
19秒前
23秒前
histamin完成签到,获得积分10
23秒前
Layen完成签到,获得积分20
23秒前
kbcbwb2002完成签到,获得积分0
23秒前
知足的憨人*-*完成签到,获得积分10
24秒前
荆玉豪完成签到 ,获得积分10
25秒前
27秒前
临子完成签到,获得积分10
31秒前
Layen发布了新的文献求助20
31秒前
一生所爱完成签到,获得积分10
31秒前
嵇元容发布了新的文献求助10
32秒前
Ronan完成签到 ,获得积分10
33秒前
嵇元容完成签到,获得积分10
39秒前
lyy完成签到,获得积分10
42秒前
可爱的函函应助lyy采纳,获得10
48秒前
欣喜的书芹完成签到 ,获得积分10
1分钟前
Tendency完成签到 ,获得积分10
1分钟前
RONG完成签到 ,获得积分10
1分钟前
Nikki发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高山流水完成签到 ,获得积分10
1分钟前
1分钟前
充电宝应助暮然采纳,获得10
1分钟前
Elthrai完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458817
求助须知:如何正确求助?哪些是违规求助? 4564805
关于积分的说明 14296938
捐赠科研通 4489857
什么是DOI,文献DOI怎么找? 2459372
邀请新用户注册赠送积分活动 1449054
关于科研通互助平台的介绍 1424535