Pan-Sharpening Framework Based on Multiscale Entropy Level Matching and Its Application

锐化 计算机科学 多光谱图像 图像融合 熵(时间箭头) 图像分辨率 人工智能 转化(遗传学) 计算机视觉 遥感 图像(数学) 生物化学 化学 物理 量子力学 基因 地质学
作者
Jingzhe Tao,Chuanming Song,Derui Song,Xianghai Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-21 被引量:4
标识
DOI:10.1109/tgrs.2022.3198097
摘要

Current remote sensing hardware technology is not yet able to acquire multiband remote sensing images with both high spatial and spectral resolution. As an important tool to compensate for the lack of spatial information acquisition of multispectral (MS) images, pan-sharpening has been an important and continuously active research area in remote sensing image processing. Although many methods have emerged, the problem of how to obtain high spatial resolution while effectively maintaining the spectral information of MS images has not been well solved. Many aspects still need further research. In this article, we first investigate the essential properties and rationality of two common framework types in the multiresolution analysis (MRA) sharpening method of pan-sharpening from the source perspective—the identical-resolution framework (IRF) derived from the generalized fusion application and the different-resolution framework (DRF) exclusive to the sharpening application, and show that the core difference between the two frameworks lies in the different ideas of utilizing the multiscale transformation, i.e., they tend to expand the scale space and model the spatially blurred degradation relationship between the sources, respectively. Both of them have their own advantages and disadvantages in handling detailed information, and neither of them can effectively deal with the "detail exclusivity" problem. Based on this, the idea of "entropy level matching" (ELM) of pan-sharpening is presented, and a comprehensive framework that can combine the advantages of the two types of frameworks is constructed, namely, the multiscale ELM framework. Furthermore, as an application of this framework, we propose a sharpening method shearlet transform-based entropy matching (STEM) built on the nonsubsampled shearlet as a multiscale transformation method. According to the difference in detail injection mode in it, it can be further divided into two sharpening methods based on additive mode and substitutive mode. The comparison experiments with 11 popular methods show that the proposed two sharpening methods can effectively improve the spatial resolution of MS images while keeping the spectral information well, and the comprehensive performance advantage is obvious. The source code of the proposed method can be downloaded from https://github.com/JZ-Tao/STEM/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Crisp完成签到,获得积分10
刚刚
单薄斑马发布了新的文献求助10
刚刚
刚刚
huang完成签到,获得积分10
1秒前
1秒前
飘零枫叶完成签到,获得积分10
1秒前
宁阿霜完成签到,获得积分0
1秒前
AAA完成签到,获得积分10
1秒前
诚c完成签到,获得积分10
2秒前
鳗鱼思卉完成签到,获得积分10
2秒前
sunny完成签到,获得积分10
2秒前
Cold-Drink-Shop完成签到,获得积分10
3秒前
小小小小小绿红完成签到,获得积分10
3秒前
严美娜完成签到,获得积分10
3秒前
远昼完成签到,获得积分10
4秒前
米歇尔完成签到,获得积分10
5秒前
九零后无心完成签到,获得积分10
5秒前
auraro完成签到 ,获得积分10
5秒前
麦麦脆汁猪完成签到 ,获得积分10
6秒前
早早入眠完成签到,获得积分10
6秒前
小程别放弃完成签到,获得积分10
6秒前
齐齐巴宾发布了新的文献求助10
7秒前
慕青应助liudahua采纳,获得10
7秒前
bkagyin应助小西采纳,获得10
7秒前
明年今日完成签到,获得积分20
7秒前
玩命的鱼发布了新的文献求助10
7秒前
8秒前
shallowdream完成签到,获得积分10
8秒前
ljx完成签到 ,获得积分10
8秒前
轩少的完成签到 ,获得积分10
8秒前
无私水卉发布了新的文献求助20
9秒前
亚威完成签到,获得积分10
9秒前
西西弗发布了新的文献求助10
9秒前
阔达的海完成签到,获得积分10
10秒前
10秒前
自由的凛完成签到,获得积分10
11秒前
单薄斑马完成签到,获得积分10
11秒前
XSB完成签到,获得积分10
11秒前
12秒前
苏甜发布了新的文献求助10
12秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142925
求助须知:如何正确求助?哪些是违规求助? 2793876
关于积分的说明 7808440
捐赠科研通 2450196
什么是DOI,文献DOI怎么找? 1303702
科研通“疑难数据库(出版商)”最低求助积分说明 627041
版权声明 601356