Pan-Sharpening Framework Based on Multiscale Entropy Level Matching and Its Application

锐化 计算机科学 多光谱图像 图像融合 熵(时间箭头) 图像分辨率 人工智能 转化(遗传学) 计算机视觉 遥感 图像(数学) 生物化学 化学 物理 量子力学 基因 地质学
作者
Jingzhe Tao,Chuanming Song,Derui Song,Xianghai Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-21 被引量:4
标识
DOI:10.1109/tgrs.2022.3198097
摘要

Current remote sensing hardware technology is not yet able to acquire multiband remote sensing images with both high spatial and spectral resolution. As an important tool to compensate for the lack of spatial information acquisition of multispectral (MS) images, pan-sharpening has been an important and continuously active research area in remote sensing image processing. Although many methods have emerged, the problem of how to obtain high spatial resolution while effectively maintaining the spectral information of MS images has not been well solved. Many aspects still need further research. In this article, we first investigate the essential properties and rationality of two common framework types in the multiresolution analysis (MRA) sharpening method of pan-sharpening from the source perspective—the identical-resolution framework (IRF) derived from the generalized fusion application and the different-resolution framework (DRF) exclusive to the sharpening application, and show that the core difference between the two frameworks lies in the different ideas of utilizing the multiscale transformation, i.e., they tend to expand the scale space and model the spatially blurred degradation relationship between the sources, respectively. Both of them have their own advantages and disadvantages in handling detailed information, and neither of them can effectively deal with the "detail exclusivity" problem. Based on this, the idea of "entropy level matching" (ELM) of pan-sharpening is presented, and a comprehensive framework that can combine the advantages of the two types of frameworks is constructed, namely, the multiscale ELM framework. Furthermore, as an application of this framework, we propose a sharpening method shearlet transform-based entropy matching (STEM) built on the nonsubsampled shearlet as a multiscale transformation method. According to the difference in detail injection mode in it, it can be further divided into two sharpening methods based on additive mode and substitutive mode. The comparison experiments with 11 popular methods show that the proposed two sharpening methods can effectively improve the spatial resolution of MS images while keeping the spectral information well, and the comprehensive performance advantage is obvious. The source code of the proposed method can be downloaded from https://github.com/JZ-Tao/STEM/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
huhaoran完成签到,获得积分10
1秒前
1秒前
5秒前
7秒前
9秒前
9秒前
9秒前
ZZZ发布了新的文献求助10
10秒前
ding应助loooooong采纳,获得10
12秒前
研友_VZG7GZ应助笨笨山芙采纳,获得10
13秒前
叶叶完成签到,获得积分10
13秒前
完美世界应助海德堡采纳,获得10
14秒前
Yzz完成签到,获得积分10
15秒前
16秒前
科目三应助二三采纳,获得10
17秒前
小熊饼干完成签到,获得积分10
18秒前
皮皮虾完成签到,获得积分10
18秒前
打打应助龙共采纳,获得10
19秒前
19秒前
WuchangI完成签到,获得积分10
20秒前
21秒前
佳佳应助huyz采纳,获得10
21秒前
yang完成签到,获得积分10
22秒前
勤劳糜发布了新的文献求助10
23秒前
及禾应助青菜采纳,获得10
23秒前
acb发布了新的文献求助10
24秒前
24秒前
huyz发布了新的文献求助10
24秒前
24秒前
25秒前
25秒前
27秒前
loooooong发布了新的文献求助10
27秒前
28秒前
专注棒棒糖完成签到 ,获得积分10
28秒前
雪花完成签到 ,获得积分10
30秒前
nn发布了新的文献求助10
30秒前
暴龙战士图图完成签到,获得积分10
31秒前
二三发布了新的文献求助10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966201
求助须知:如何正确求助?哪些是违规求助? 3511622
关于积分的说明 11158995
捐赠科研通 3246241
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874321
科研通“疑难数据库(出版商)”最低求助积分说明 804343