Nomogram for predicting overall survival in patients with triple-negative apocrine breast cancer: Surveillance, epidemiology, and end results-based analysis

监测、流行病学和最终结果 列线图 三阴性乳腺癌 流行病学 医学 乳腺癌 肿瘤科 顶泌 内科学 癌症 癌症登记处 病理
作者
Yinggang Xu,Weiwei Zhang,Jinzhi He,Ye Wang,Rui Chen,Wenjie Shi,Xinyu Wan,Xiaoqing Shi,Xiaofeng Huang,Jue Wang,Xiaoming Zha
出处
期刊:The Breast [Elsevier]
卷期号:66: 8-14 被引量:5
标识
DOI:10.1016/j.breast.2022.08.011
摘要

PurposeTriple-negative apocrine carcinoma (TNAC) is a sort of triple-negative breast cancer (TNBC) that is rare and prognosis of these patients is unclear. The present study constructed an effective nomogram to assist in predicting TNAC patients overall survival (OS).MethodsA total of 373 TNAC patients from the surveillance, epidemiology, and end results (SEER) got extracted from 2010 to 2016 and were divided into training (n = 261) and external validation (n = 112) groups (split ratio, 7:3) randomly. A Cox regression model was utilized to creating a nomogram according to the risk factors affecting prognosis. The predictive capability of the nomogram was estimated with receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA).ResultsMultivariate Cox regression analysis revealed age, surgery, chemotherapy, stage, and first malignant primary as independent predictors of OS. A prediction model was constructed and virtualized using the nomogram. The time-dependent area under the curve (AUC) showed satisfactory discrimination of the nomogram. Good consistency was shown on the calibration curves in OS between actual observations and the nomogram prediction. What's more, DCA showed that the nomogram had incredible clinical utility. Through separating the patients into groups of low and high risk group that connects with the risk system that shows a huge difference between the low-risk and high risk OS (P < 0.001).ConclusionTo predict the OS in TNAC patients, the nomogram utilizing the risk stratification system that is corresponding. These tools may help to evaluate patient prognosis and guide treatment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
活力寒梅发布了新的文献求助10
1秒前
APS完成签到,获得积分10
1秒前
2秒前
3秒前
4秒前
young发布了新的文献求助10
4秒前
称心翠容完成签到,获得积分10
5秒前
chrysan发布了新的文献求助10
5秒前
神勇健柏发布了新的文献求助10
5秒前
6秒前
云瑾完成签到,获得积分0
6秒前
凉雨渲发布了新的文献求助20
6秒前
五五发布了新的文献求助10
8秒前
pawn发布了新的文献求助10
8秒前
CipherSage应助jjjwln采纳,获得10
8秒前
团团发布了新的文献求助10
9秒前
搞怪的怀蕊完成签到,获得积分10
9秒前
Robin完成签到,获得积分20
10秒前
希望天下0贩的0应助chrysan采纳,获得10
11秒前
yayajiu完成签到,获得积分10
12秒前
calm完成签到 ,获得积分10
13秒前
wanci应助雨水采纳,获得10
13秒前
小张同学完成签到 ,获得积分10
14秒前
Echo完成签到,获得积分10
14秒前
追梦大鹏关注了科研通微信公众号
15秒前
学习痴完成签到 ,获得积分10
16秒前
20秒前
sxxsxx完成签到,获得积分20
21秒前
诗筠完成签到 ,获得积分10
21秒前
小二郎应助神勇健柏采纳,获得10
22秒前
MargeryMay完成签到,获得积分10
22秒前
文静飞阳完成签到,获得积分10
22秒前
小黑完成签到,获得积分10
22秒前
款冬完成签到,获得积分10
22秒前
23秒前
方断秋完成签到,获得积分10
24秒前
科目三应助zzz采纳,获得10
24秒前
娆疆第一深情完成签到,获得积分10
24秒前
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
探索化学的奥秘:电子结构方法 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137174
求助须知:如何正确求助?哪些是违规求助? 2788210
关于积分的说明 7784949
捐赠科研通 2444164
什么是DOI,文献DOI怎么找? 1299822
科研通“疑难数据库(出版商)”最低求助积分说明 625576
版权声明 601011