Nomogram for predicting overall survival in patients with triple-negative apocrine breast cancer: Surveillance, epidemiology, and end results-based analysis

监测、流行病学和最终结果 列线图 三阴性乳腺癌 流行病学 医学 乳腺癌 肿瘤科 顶泌 内科学 癌症 癌症登记处 病理
作者
Yinggang Xu,Weiwei Zhang,Jinzhi He,Ye Wang,Rui Chen,Wenjie Shi,Xinyu Wan,Xiaoqing Shi,Xiaofeng Huang,Jue Wang,Xiaoming Zha
出处
期刊:The Breast [Elsevier BV]
卷期号:66: 8-14 被引量:5
标识
DOI:10.1016/j.breast.2022.08.011
摘要

PurposeTriple-negative apocrine carcinoma (TNAC) is a sort of triple-negative breast cancer (TNBC) that is rare and prognosis of these patients is unclear. The present study constructed an effective nomogram to assist in predicting TNAC patients overall survival (OS).MethodsA total of 373 TNAC patients from the surveillance, epidemiology, and end results (SEER) got extracted from 2010 to 2016 and were divided into training (n = 261) and external validation (n = 112) groups (split ratio, 7:3) randomly. A Cox regression model was utilized to creating a nomogram according to the risk factors affecting prognosis. The predictive capability of the nomogram was estimated with receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA).ResultsMultivariate Cox regression analysis revealed age, surgery, chemotherapy, stage, and first malignant primary as independent predictors of OS. A prediction model was constructed and virtualized using the nomogram. The time-dependent area under the curve (AUC) showed satisfactory discrimination of the nomogram. Good consistency was shown on the calibration curves in OS between actual observations and the nomogram prediction. What's more, DCA showed that the nomogram had incredible clinical utility. Through separating the patients into groups of low and high risk group that connects with the risk system that shows a huge difference between the low-risk and high risk OS (P < 0.001).ConclusionTo predict the OS in TNAC patients, the nomogram utilizing the risk stratification system that is corresponding. These tools may help to evaluate patient prognosis and guide treatment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
没有昵称完成签到,获得积分10
2秒前
3秒前
JuntaoLi完成签到,获得积分10
3秒前
sam完成签到,获得积分10
3秒前
QixuGuo完成签到,获得积分10
3秒前
yandongchem发布了新的文献求助10
5秒前
张雷举报小白求助涉嫌违规
5秒前
wang发布了新的文献求助10
5秒前
6秒前
6秒前
doby发布了新的文献求助10
7秒前
7秒前
MRIFFF完成签到,获得积分10
8秒前
tt666发布了新的文献求助10
10秒前
忐忑的猕猴桃应助QYPANG采纳,获得10
10秒前
xiaozhao完成签到,获得积分10
11秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得30
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
DengLingjie完成签到,获得积分10
15秒前
15秒前
Yuejun完成签到,获得积分10
16秒前
tevice92发布了新的文献求助10
19秒前
19秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992986
求助须知:如何正确求助?哪些是违规求助? 3533726
关于积分的说明 11263679
捐赠科研通 3273550
什么是DOI,文献DOI怎么找? 1806095
邀请新用户注册赠送积分活动 882942
科研通“疑难数据库(出版商)”最低求助积分说明 809629