已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and Validation of a Deep Learning Model for Predicting Treatment Response in Patients With Newly Diagnosed Epilepsy

队列 医学 癫痫 接收机工作特性 临床试验 队列研究 物理疗法 内科学 精神科
作者
Haris Hakeem,Wei Feng,Zhibin Chen,Jiun Choong,Martin J. Brodie,Si‐Lei Fong,Kheng Seang Lim,Junhong Wu,Xuefeng Wang,Nicholas Lawn,Guanzhong Ni,Xiang Gao,Mijuan Luo,Ziyi Chen,Zongyuan Ge,Patrick Kwan
出处
期刊:JAMA Neurology [American Medical Association]
卷期号:79 (10): 986-986 被引量:50
标识
DOI:10.1001/jamaneurol.2022.2514
摘要

Selection of antiseizure medications (ASMs) for epilepsy remains largely a trial-and-error approach. Under this approach, many patients have to endure sequential trials of ineffective treatments until the "right drugs" are prescribed.To develop and validate a deep learning model using readily available clinical information to predict treatment success with the first ASM for individual patients.This cohort study developed and validated a prognostic model. Patients were treated between 1982 and 2020. All patients were followed up for a minimum of 1 year or until failure of the first ASM. A total of 2404 adults with epilepsy newly treated at specialist clinics in Scotland, Malaysia, Australia, and China between 1982 and 2020 were considered for inclusion, of whom 606 (25.2%) were excluded from the final cohort because of missing information in 1 or more variables.One of 7 antiseizure medications.With the use of the transformer model architecture on 16 clinical factors and ASM information, this cohort study first pooled all cohorts for model training and testing. The model was trained again using the largest cohort and externally validated on the other 4 cohorts. The area under the receiver operating characteristic curve (AUROC), weighted balanced accuracy, sensitivity, and specificity of the model were all assessed for predicting treatment success based on the optimal probability cutoff. Treatment success was defined as complete seizure freedom for the first year of treatment while taking the first ASM. Performance of the transformer model was compared with other machine learning models.The final pooled cohort included 1798 adults (54.5% female; median age, 34 years [IQR, 24-50 years]). The transformer model that was trained using the pooled cohort had an AUROC of 0.65 (95% CI, 0.63-0.67) and a weighted balanced accuracy of 0.62 (95% CI, 0.60-0.64) on the test set. The model that was trained using the largest cohort only had AUROCs ranging from 0.52 to 0.60 and a weighted balanced accuracy ranging from 0.51 to 0.62 in the external validation cohorts. Number of pretreatment seizures, presence of psychiatric disorders, electroencephalography, and brain imaging findings were the most important clinical variables for predicted outcomes in both models. The transformer model that was developed using the pooled cohort outperformed 2 of the 5 other models tested in terms of AUROC.In this cohort study, a deep learning model showed the feasibility of personalized prediction of response to ASMs based on clinical information. With improvement of performance, such as by incorporating genetic and imaging data, this model may potentially assist clinicians in selecting the right drug at the first trial.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
momo102610发布了新的文献求助10
1秒前
深情安青应助su采纳,获得10
1秒前
66289完成签到 ,获得积分10
4秒前
深情安青应助hjc采纳,获得10
4秒前
4秒前
Aman发布了新的文献求助10
5秒前
Vivian发布了新的文献求助10
5秒前
CodeCraft应助wyy采纳,获得10
6秒前
vernal发布了新的文献求助10
8秒前
Ccc发布了新的文献求助10
10秒前
柏林寒冬给苏乘风的求助进行了留言
12秒前
14秒前
hjc完成签到,获得积分10
16秒前
17秒前
xiaoshuwang完成签到,获得积分10
18秒前
beloved完成签到 ,获得积分10
18秒前
JackWu发布了新的文献求助10
19秒前
19秒前
tkx是流氓兔完成签到,获得积分10
19秒前
hjc发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
20秒前
博修发布了新的文献求助10
23秒前
23秒前
Kiling完成签到 ,获得积分10
24秒前
完美世界应助Ccc采纳,获得10
25秒前
SciGPT应助怡崽采纳,获得10
30秒前
32秒前
32秒前
英俊的铭应助哈哈哈采纳,获得10
33秒前
34秒前
风清扬发布了新的文献求助10
37秒前
liran完成签到,获得积分20
41秒前
41秒前
领导范儿应助泽灵采纳,获得10
43秒前
douhao发布了新的文献求助10
45秒前
怕孤单的幼荷完成签到 ,获得积分10
47秒前
49秒前
之星君完成签到,获得积分10
50秒前
51秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959928
求助须知:如何正确求助?哪些是违规求助? 3506172
关于积分的说明 11128138
捐赠科研通 3238123
什么是DOI,文献DOI怎么找? 1789535
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803024