Shared Control of Elbow Movements with Functional Electrical Stimulation and Exoskeleton Assistance

功能性电刺激 扭矩 控制器(灌溉) 计算机科学 弹道 外骨骼 机器人 控制理论(社会学) 可转让性 控制工程 模拟 控制(管理) 工程类 人工智能 刺激 神经科学 机器学习 罗伊特 物理 天文 热力学 生物 农学
作者
Nathan Dunkelberger,Skye A. Carlson,Jeffrey Berning,Kyra C. Stovicek,Eric M. Schearer,Marcia K. O’Malley
标识
DOI:10.1109/icorr55369.2022.9896570
摘要

Individuals who suffer from paralysis as a result of a spinal cord injury list restoration of arm and hand function as a top priority. FES helps restore movement using the user's own muscles, but does not produce accurate and repeatable movements necessary for many functional tasks. Robots can assist users in achieving accurate and repeatable movements, but often require bulky hardware to generate the necessary torques. We propose sharing torque requirements between a robot and FES to reduce robot torque output compared to a robot acting alone, yet maintain high accuracy. Cooperative PD and model predictive control algorithms were designed to share the control between these two torque sources. Corresponding PD and MPC algorithms that do not use FES were also designed. The control algorithms were tested with 10 able-bodied subjects. Torque and position tracking accuracy were compared when the system was commanded to follow a functional elbow flexion/extension trajectory. The robot torque required to achieve these movements was reduced for the shared control cases compared to the algorithms acting without FES. We observed a reduction in position accuracy with the MPC shared controller compared to the PD shared controller, while the MPC shared controller resulted in greater reductions in torque requirements. Both of these shared algorithms showed improvements over existing options, and can be used on any given trajectory, allowing for better transferability to functional tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
huiluowork发布了新的文献求助10
1秒前
1秒前
现代含桃发布了新的文献求助10
1秒前
1秒前
2秒前
zcz完成签到,获得积分10
2秒前
王一生完成签到,获得积分10
2秒前
2秒前
阿筑完成签到 ,获得积分10
2秒前
程程发布了新的文献求助100
2秒前
畅快的草莓完成签到,获得积分10
2秒前
3秒前
跳跃的野狼完成签到,获得积分10
3秒前
3秒前
坚强的纸飞机完成签到,获得积分10
4秒前
ysy完成签到,获得积分10
4秒前
wwqc完成签到,获得积分0
4秒前
许女士完成签到,获得积分10
4秒前
wanci应助超帅的南霜采纳,获得10
4秒前
Wendy完成签到,获得积分10
4秒前
爆米花应助兴奋的从蕾采纳,获得10
4秒前
舒心完成签到,获得积分10
5秒前
TH1223发布了新的文献求助10
5秒前
5秒前
6秒前
黄超完成签到,获得积分10
6秒前
chenchen发布了新的文献求助10
6秒前
993494543发布了新的文献求助30
6秒前
友好的代丝完成签到,获得积分20
6秒前
友好傲白完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
7秒前
江璃完成签到,获得积分10
7秒前
8秒前
宋浩奇完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665264
求助须知:如何正确求助?哪些是违规求助? 4875562
关于积分的说明 15112548
捐赠科研通 4824343
什么是DOI,文献DOI怎么找? 2582710
邀请新用户注册赠送积分活动 1536677
关于科研通互助平台的介绍 1495284