Group percolation in interdependent networks with reinforcement network layer

相互依存的网络 连续介质渗流理论 渗透(认知心理学) 渗流理论 稳健性(进化) 数学 重整化群 计算机科学 相变 复杂网络 拓扑(电路) 渗流临界指数 组合数学 临界指数 物理 凝聚态物理 万维网 基因 神经科学 生物 生物化学 化学 数学物理
作者
Qian Li,Hongtao Yu,Weitao Han,Yiteng Wu
出处
期刊:Chaos [American Institute of Physics]
卷期号:32 (9) 被引量:4
标识
DOI:10.1063/5.0091342
摘要

In many real-world interdependent network systems, nodes often work together to form groups, which can enhance robustness to resist risks. However, previous group percolation models are always of a first-order phase transition, regardless of the group size distribution. This motivates us to investigate a generalized model for group percolation in interdependent networks with a reinforcement network layer to eliminate collapse. Some backup devices that are equipped for a density ρ of reinforced nodes constitute the reinforcement network layer. For each group, we assume that at least one node of the group can function in one network and a node in another network depends on the group to function. We find that increasing the density ρ of reinforcement nodes and the size S of the dependency group can significantly enhance the robustness of interdependent networks. Importantly, we find the existence of a hybrid phase transition behavior and propose a method for calculating the shift point of percolation types. The most interesting finding is the exact universal solution to the minimal density ρ of reinforced nodes (or the minimum group size S) to prevent abrupt collapse for Erdős-Rényi, scale-free, and regular random interdependent networks. Furthermore, we present the validity of the analytic solutions for a triple point ρ (or S ), the corresponding phase transition point p , and second-order phase transition points p in interdependent networks. These findings might yield a broad perspective for designing more resilient interdependent infrastructure networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
成就莞完成签到,获得积分10
刚刚
Ww完成签到,获得积分10
1秒前
yaoyao发布了新的文献求助10
1秒前
1秒前
佰斯特威发布了新的文献求助30
2秒前
Dawn发布了新的文献求助10
2秒前
2秒前
认真的可冥完成签到,获得积分10
3秒前
3秒前
4秒前
silong发布了新的文献求助10
4秒前
HITvagary完成签到,获得积分10
4秒前
华仔应助欣喜访旋采纳,获得10
4秒前
4秒前
5秒前
良辰应助科研cc采纳,获得10
5秒前
NN应助西门晴采纳,获得10
5秒前
瘦瘦白昼发布了新的文献求助10
5秒前
1111应助科研小民工采纳,获得20
6秒前
逸风望完成签到,获得积分10
6秒前
6秒前
7秒前
慕青应助开朗的慕儿采纳,获得10
7秒前
7秒前
YAOYAO完成签到,获得积分0
7秒前
紫色系完成签到,获得积分10
7秒前
黄豆芽发布了新的文献求助10
8秒前
8秒前
Jin完成签到,获得积分10
9秒前
Akim应助外向如冬采纳,获得10
10秒前
10秒前
10秒前
浩浩大人完成签到,获得积分20
12秒前
12秒前
狂野的雅绿完成签到 ,获得积分10
12秒前
WMT完成签到 ,获得积分10
12秒前
正在输入中完成签到,获得积分10
12秒前
Lucas应助小小学术人采纳,获得10
13秒前
阳光刺眼完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672