化学
一氧化氮
钌
光解
伤口愈合
光化学
生物化学
有机化学
催化作用
外科
医学
作者
Sain Singh,Govinda R. Navale,Mithil Mahale,Virendra Kumar Chaudhary,Kisan M. Kodam,Kaushik Ghosh
出处
期刊:Nitric Oxide
[Elsevier]
日期:2022-09-27
卷期号:129: 30-40
被引量:13
标识
DOI:10.1016/j.niox.2022.09.003
摘要
A photoactivable NO releasing complex [Ru(L1-2)(PPh3)(NO)Cl2](PF6)(1a) have been synthesized by complex [RuL1-2(PPh3)2Cl2](1). Newly designed bidentate ligands, i.e., 4-methoxy-N'-phenyl-N'-(pyridin-2-ylmethyl)benzohydrazide(L1) and 4-nitro-N'-phenyl-N'-(pyridin-2-ylmethyl)benzohydrazide (L2) were utilized to synthesize complex (1). Complex (1) was characterized by ESI-MS, and the solid structure of the complex [1a](PF6) was acquired by X-ray crystallography. Different spectroscopic techniques were employed for the identification of ligands (L1 and L2) and complexes (1 and [1a](PF6)). Calculations employing DFT and TD-DFT were made better to understand the electronic properties of the complex [1a](PF6). The photo liberation experiments were screened in the presence of visible light lamp. Griess assay experiment was used to quantify the photo released amount to NO. The photo liberated NO was successfully transferred to reduced myoglobin (Mb). The complex [1a](PF6) at 50 μg/mL concentration was used for wound healing and antimicrobial activity on B16F1 mouse skin cells and Escherichia coli bacteria, respectively. In results, we observed a considerable wound healing activity of [1a](PF6) complex after 36 h of incubation in the light-treated cells compared to the control medium, and also it shows more than 99% inhibition of bacterial cells after 1.5 h of treatment in the presence of light. These study suggested that this complex 1a](PF6) could be utilized for topical delivery of NO for combating several dermatological infections.
科研通智能强力驱动
Strongly Powered by AbleSci AI