Hollow prussian blue nanozyme-richened liposome for artificial neural network-assisted multimodal colorimetric-photothermal immunoassay on smartphone

普鲁士蓝 检出限 生物传感器 吸光度 材料科学 免疫分析 信号(编程语言) 光热治疗 级联 化学 纳米技术 计算机科学 色谱法 电化学 电极 生物 物理化学 抗体 程序设计语言 免疫学
作者
Zhichao Yu,Hexiang Gong,Mei‐Jin Li,Dianping Tang
出处
期刊:Biosensors and Bioelectronics [Elsevier]
卷期号:218: 114751-114751 被引量:161
标识
DOI:10.1016/j.bios.2022.114751
摘要

Multi-signal output biosensor technologies based on optical visualization and electrochemical or other sophisticated signal transduction are flourishing. However, sensors with multiple signal outputs still exhibit some limitations, such as the additional requirement for multiple regression equation construction and control of results. Herein, we developed a sensitive cascade of colorimetric-photothermal biosensor models for prognostic management of patients with myocardial infarction with the assistance of an artificial neural network (ANN) normalization process. A cascade enzymatic reaction device based on hollow prussian blue nanoparticles (h-PB NPs), and a portable smartphone-adapted signal visualization platform were integrated into the all-in-one 3D printed assay device. Specifically, liposomes encapsulated with h-PB were confined to the test cell using a classical immunoassay. Based on the peroxidase-like activity of h-PB, the h-PB obtained by the immunization process was further transferred to the TMB-H2O2 system and used as a cascade of signal amplification for sensitive determination of cTnI protein. The target concentration was converted into a measurable temperature signal readout under 808 nm NIR laser excitation, and the absorbance of the TMB (ox-TMB) system at 650 nm was recorded simultaneously as a reference during this process. Interestingly, a parallel 3-layer, 64-neuron ANN learning model was built for bimodal signal processing and regression. Under optimal conditions, the bimodal machine learning-assisted co-immunoassay exhibited an ultra-wide dynamic range of 0.02-20 ng mL-1 and a detection limit of 10.8 pg mL-1. This work creatively presents a theoretical study of machine learning-assisted multimodal biosensors, providing new insights for the development of ultrasensitive non-enzymatic biosensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菠萝冰棒完成签到 ,获得积分10
1秒前
调研昵称发布了新的文献求助10
2秒前
2秒前
2秒前
lalala发布了新的文献求助10
3秒前
自然从寒完成签到,获得积分10
6秒前
静丶发布了新的文献求助10
6秒前
7秒前
8秒前
桐桐应助shanshan采纳,获得10
11秒前
12秒前
华仔应助静丶采纳,获得10
12秒前
12秒前
compchem发布了新的文献求助10
13秒前
13秒前
斯文败类应助秣旎采纳,获得10
14秒前
研友_Z11kkZ发布了新的文献求助10
15秒前
仁爱钢笔完成签到 ,获得积分10
16秒前
joye应助LTZ采纳,获得30
17秒前
18秒前
19秒前
郭团团完成签到,获得积分10
19秒前
一二三木偶人完成签到,获得积分10
20秒前
娇气的伟宸完成签到,获得积分20
20秒前
MY发布了新的文献求助10
23秒前
檀123完成签到 ,获得积分10
23秒前
劲秉应助wendydqw采纳,获得10
24秒前
lalala发布了新的文献求助10
26秒前
26秒前
26秒前
26秒前
马里奥LDM完成签到,获得积分10
28秒前
炎炎夏无声完成签到 ,获得积分10
28秒前
ZLPY2发布了新的文献求助10
29秒前
29秒前
29秒前
wanci应助一万光年采纳,获得10
29秒前
小v1212发布了新的文献求助10
30秒前
30秒前
因垂丝汀发布了新的文献求助10
31秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259778
求助须知:如何正确求助?哪些是违规求助? 2901272
关于积分的说明 8314891
捐赠科研通 2570789
什么是DOI,文献DOI怎么找? 1396675
科研通“疑难数据库(出版商)”最低求助积分说明 653554
邀请新用户注册赠送积分活动 631853