已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dynamic scheduling of tasks in cloud manufacturing with multi-agent reinforcement learning

强化学习 计算机科学 调度(生产过程) 分布式计算 动态优先级调度 云计算 作业车间调度 人工智能 概化理论 云制造 公平份额计划 计算机网络 工程类 服务质量 布线(电子设计自动化) 统计 数学 操作系统 运营管理
作者
Xiaohan Wang,Zhang Li,Yongkui Liu,Feng Li,Zhe Chen,Chun Zhao,Tian Bai
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:65: 130-145 被引量:66
标识
DOI:10.1016/j.jmsy.2022.08.004
摘要

Cloud manufacturing provides a cloud platform to offer on-demand services to complete consumers’ tasks, but assigning tasks to enterprises with different services requires many-to-many scheduling. The dynamic cloud environment puts forward higher requirements on scheduling algorithms’ real-time response and generalizability. Additionally, complex manufacturing tasks with flexible processing sequences also increase the decision-making difficulty. The existing approaches either have difficulty meeting the requirements of dynamics and fast-respond or struggle to effectively capture features of tasks with flexible processing sequences. To address these limitations, we develop a novel scheduling algorithm to solve a dynamic scheduling problem in the group service cloud manufacturing environment. Our proposal is formulated and trained by multi-agent reinforcement learning. The graph convolution network encodes tasks’ graph-structure features, and the recurrent neural network records each task’s processing trajectories. We independently design the action space and the reward function and train the algorithm with a mixing network under the centralized training decentralized execution architecture. Multi-agent reinforcement learning and graph convolution networks are rarely used to cloud manufacturing scheduling problems. Contrast experiments on a case study indicate that our proposal outperforms the other six multi-agent reinforcement learning-based scheduling algorithms in terms of scheduling performance and generalizability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
冷静妙竹发布了新的文献求助20
3秒前
3秒前
ZY关闭了ZY文献求助
3秒前
5秒前
Criminology34应助科研通管家采纳,获得20
5秒前
Owen应助科研通管家采纳,获得20
5秒前
DL应助科研通管家采纳,获得10
5秒前
Tourist应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
Tourist应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
Tourist应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
6秒前
Tourist应助科研通管家采纳,获得10
6秒前
6秒前
Tourist应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
王谨关注了科研通微信公众号
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
7秒前
7秒前
Magali应助风趣的映天采纳,获得30
7秒前
腈仙发布了新的文献求助10
7秒前
mxinm完成签到,获得积分10
7秒前
怕黑乌冬面完成签到 ,获得积分10
8秒前
8秒前
9秒前
Lucas应助ruby采纳,获得10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355874
求助须知:如何正确求助?哪些是违规求助? 4487717
关于积分的说明 13970886
捐赠科研通 4388491
什么是DOI,文献DOI怎么找? 2411104
邀请新用户注册赠送积分活动 1403650
关于科研通互助平台的介绍 1377279