清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A machine-learning algorithm for diagnosis of multisystem inflammatory syndrome in children and Kawasaki disease in the USA: a retrospective model development and validation study

川崎病 医学 回顾性队列研究 疾病 儿科 算法 急诊科 内科学 计算机科学 精神科 动脉
作者
Jonathan Y. Lam,Chisato Shimizu,Adriana H. Tremoulet,Emelia Bainto,Samantha C. Roberts,Nipha Sivilay,Michael Gardiner,John T. Kanegaye,Alexander H. Hogan,Juan Carlos Salazar,Sindhu Mohandas,Jacqueline Szmuszkovicz,Simran Mahanta,Audrey Dionne,Jane W. Newburger,Emily Ansusinha,Roberta L. DeBiasi,Shiying Hao,Xuefeng B. Ling,Harvey J. Cohen,Shamim Nemati,Jane C. Burns
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:4 (10): e717-e726 被引量:29
标识
DOI:10.1016/s2589-7500(22)00149-2
摘要

Multisystem inflammatory syndrome in children (MIS-C) is a novel disease that was identified during the COVID-19 pandemic and is characterised by systemic inflammation following SARS-CoV-2 infection. Early detection of MIS-C is a challenge given its clinical similarities to Kawasaki disease and other acute febrile childhood illnesses. We aimed to develop and validate an artificial intelligence algorithm that can distinguish among MIS-C, Kawasaki disease, and other similar febrile illnesses and aid in the diagnosis of patients in the emergency department and acute care setting.In this retrospective model development and validation study, we developed a deep-learning algorithm called KIDMATCH (Kawasaki Disease vs Multisystem Inflammatory Syndrome in Children) using patient age, the five classic clinical Kawasaki disease signs, and 17 laboratory measurements. All features were prospectively collected at the time of initial evaluation from patients diagnosed with Kawasaki disease or other febrile illness between Jan 1, 2009, and Dec 31, 2019, at Rady Children's Hospital in San Diego (CA, USA). For patients with MIS-C, the same data were collected from patients between May 7, 2020, and July 20, 2021, at Rady Children's Hospital, Connecticut Children's Medical Center in Hartford (CT, USA), and Children's Hospital Los Angeles (CA, USA). We trained a two-stage model consisting of feedforward neural networks to distinguish between patients with MIS-C and those without and then those with Kawasaki disease and other febrile illnesses. After internally validating the algorithm using stratified tenfold cross-validation, we incorporated a conformal prediction framework to tag patients with erroneous data or distribution shifts. We finally externally validated KIDMATCH on patients with MIS-C enrolled between April 22, 2020, and July 21, 2021, from Boston Children's Hospital (MA, USA), Children's National Hospital (Washington, DC, USA), and the CHARMS Study Group consortium of 14 US hospitals.1517 patients diagnosed at Rady Children's Hospital between Jan 1, 2009, and June 7, 2021, with MIS-C (n=69), Kawasaki disease (n=775), or other febrile illnesses (n=673) were identified for internal validation, with an additional 16 patients with MIS-C included from Connecticut Children's Medical Center and 50 from Children's Hospital Los Angeles between May 7, 2020, and July 20, 2021. KIDMATCH achieved a median area under the receiver operating characteristic curve during internal validation of 98·8% (IQR 98·0-99·3) in the first stage and 96·0% (95·6-97·2) in the second stage. We externally validated KIDMATCH on 175 patients with MIS-C from Boston Children's Hospital (n=50), Children's National Hospital (n=42), and the CHARMS Study Group consortium of 14 US hospitals (n=83). External validation of KIDMATCH on patients with MIS-C correctly classified 76 of 81 patients (94% accuracy, two rejected by conformal prediction) from 14 hospitals in the CHARMS Study Group consortium, 47 of 49 patients (96% accuracy, one rejected by conformal prediction) from Boston Children's Hospital, and 36 of 40 patients (90% accuracy, two rejected by conformal prediction) from Children's National Hospital.KIDMATCH has the potential to aid front-line clinicians to distinguish between MIS-C, Kawasaki disease, and other similar febrile illnesses to allow prompt treatment and prevent severe complications.US Eunice Kennedy Shriver National Institute of Child Health and Human Development, US National Heart, Lung, and Blood Institute, US Patient-Centered Outcomes Research Institute, US National Library of Medicine, the McCance Foundation, and the Gordon and Marilyn Macklin Foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
27秒前
大水完成签到 ,获得积分10
38秒前
Ryuu发布了新的文献求助10
44秒前
南风完成签到 ,获得积分10
59秒前
1分钟前
sy发布了新的文献求助10
1分钟前
勤奋流沙完成签到 ,获得积分10
1分钟前
高大的天道完成签到 ,获得积分10
1分钟前
charliechen发布了新的文献求助10
1分钟前
隐形曼青应助sy采纳,获得10
1分钟前
滕皓轩完成签到 ,获得积分10
1分钟前
Tong完成签到,获得积分0
1分钟前
今后应助从容保温杯采纳,获得10
1分钟前
zijingsy完成签到 ,获得积分10
1分钟前
雪花完成签到 ,获得积分10
1分钟前
浚稚完成签到 ,获得积分10
2分钟前
SciGPT应助xun采纳,获得10
2分钟前
MYC007完成签到 ,获得积分10
2分钟前
稳重傲晴完成签到 ,获得积分10
2分钟前
2分钟前
啦啦啦发布了新的文献求助10
2分钟前
DJ_Tokyo完成签到,获得积分10
2分钟前
2分钟前
从容保温杯完成签到,获得积分20
2分钟前
xun发布了新的文献求助10
2分钟前
上官若男应助xun采纳,获得10
3分钟前
3分钟前
3分钟前
英喆完成签到 ,获得积分10
3分钟前
Ryuu发布了新的文献求助10
4分钟前
vassallo完成签到 ,获得积分10
4分钟前
胖胖橘完成签到 ,获得积分10
4分钟前
4分钟前
xun发布了新的文献求助10
4分钟前
管靖易完成签到 ,获得积分10
5分钟前
5分钟前
无辜的行云完成签到 ,获得积分0
5分钟前
红茸茸羊完成签到 ,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
xun完成签到,获得积分20
6分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244776
求助须知:如何正确求助?哪些是违规求助? 2888424
关于积分的说明 8252886
捐赠科研通 2556909
什么是DOI,文献DOI怎么找? 1385460
科研通“疑难数据库(出版商)”最低求助积分说明 650176
邀请新用户注册赠送积分活动 626294