Automatic Matching of Multimodal Remote Sensing Images via Learned Unstructured Road Feature

计算机科学 人工智能 计算机视觉 特征(语言学) 模式识别(心理学) 分割 钥匙(锁) 光学(聚焦) 哲学 语言学 物理 计算机安全 光学
作者
Kun Yu,Chengcheng Xu,Jie Ma,Bin Fang,Junfeng Ding,Xinghua Xu,Xianqiang Bao,Shaohua Qiu
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:14 (18): 4595-4595 被引量:7
标识
DOI:10.3390/rs14184595
摘要

Automatic matching of multimodal remote sensing images remains a vital yet challenging task, particularly for remote sensing and computer vision applications. Most traditional methods mainly focus on key point detection and description of the original image, thus ignoring the deep semantic feature information such as semantic road features, with the result that the traditional method can not effectively resist nonlinear grayscale distortion, and has low matching efficiency and poor accuracy. Motivated by this, this paper proposes a novel automatic matching method named LURF via learned unstructured road features for the multimodal images. There are four main contributions in LURF. To begin with, the semantic road features were extracted from multimodal images based on segmentation model CRESIv2. Next, based on semantic road features, a stable and reliable intersection point detector has been proposed to detect unstructured key points. Moreover, a local entropy descriptor has been designed to describe key points with the local skeleton feature. Finally, a global optimization strategy is adopted to achieve the correct matching. The extensive experimental results demonstrate that the proposed LURF outperforms other state-of-the-art methods in terms of both accuracy and efficiency on different multimodal image data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
呀学习发布了新的文献求助10
1秒前
Jasper应助威武的橘子采纳,获得10
2秒前
我是老大应助Luhh采纳,获得10
2秒前
好好学习完成签到,获得积分10
2秒前
酷波er应助景飞丹采纳,获得10
2秒前
liyuxuan完成签到,获得积分10
2秒前
3秒前
4秒前
浮游应助嗯嗯嗯采纳,获得10
4秒前
4秒前
可爱的函函应助阿晓晓采纳,获得10
5秒前
大头狸花发布了新的文献求助10
5秒前
Jonas完成签到,获得积分10
6秒前
小研大究完成签到,获得积分10
6秒前
7秒前
liuxshan完成签到,获得积分10
7秒前
隐形曼青应助LYY采纳,获得10
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
euphoria完成签到,获得积分10
8秒前
xue完成签到,获得积分20
9秒前
9秒前
雪白鸿涛完成签到,获得积分10
10秒前
10秒前
慕剑发布了新的文献求助10
11秒前
庚庚发布了新的文献求助10
11秒前
11秒前
Jonas发布了新的文献求助20
12秒前
12秒前
奶茶三分糖完成签到,获得积分10
12秒前
riot发布了新的文献求助10
12秒前
111发布了新的文献求助10
13秒前
13秒前
好人一生平安完成签到,获得积分10
13秒前
ShengzhangLiu发布了新的文献求助10
13秒前
李健应助余浩宇采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950265
求助须知:如何正确求助?哪些是违规求助? 4213285
关于积分的说明 13103087
捐赠科研通 3994983
什么是DOI,文献DOI怎么找? 2186731
邀请新用户注册赠送积分活动 1201966
关于科研通互助平台的介绍 1115324