Automatic Matching of Multimodal Remote Sensing Images via Learned Unstructured Road Feature

计算机科学 人工智能 计算机视觉 特征(语言学) 模式识别(心理学) 分割 钥匙(锁) 光学(聚焦) 计算机安全 语言学 光学 物理 哲学
作者
Kun Yu,Chengcheng Xu,Jie Ma,Bin Fang,Junfeng Ding,Xinghua Xu,Xianqiang Bao,Shaohua Qiu
出处
期刊:Remote Sensing [MDPI AG]
卷期号:14 (18): 4595-4595 被引量:7
标识
DOI:10.3390/rs14184595
摘要

Automatic matching of multimodal remote sensing images remains a vital yet challenging task, particularly for remote sensing and computer vision applications. Most traditional methods mainly focus on key point detection and description of the original image, thus ignoring the deep semantic feature information such as semantic road features, with the result that the traditional method can not effectively resist nonlinear grayscale distortion, and has low matching efficiency and poor accuracy. Motivated by this, this paper proposes a novel automatic matching method named LURF via learned unstructured road features for the multimodal images. There are four main contributions in LURF. To begin with, the semantic road features were extracted from multimodal images based on segmentation model CRESIv2. Next, based on semantic road features, a stable and reliable intersection point detector has been proposed to detect unstructured key points. Moreover, a local entropy descriptor has been designed to describe key points with the local skeleton feature. Finally, a global optimization strategy is adopted to achieve the correct matching. The extensive experimental results demonstrate that the proposed LURF outperforms other state-of-the-art methods in terms of both accuracy and efficiency on different multimodal image data sets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
严晓博发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
精灵大夫完成签到,获得积分10
1秒前
2秒前
汉堡包应助imshao采纳,获得10
2秒前
KrisTina完成签到,获得积分10
2秒前
Acky完成签到 ,获得积分10
2秒前
汤佳霖发布了新的文献求助10
2秒前
蜗牛完成签到,获得积分10
2秒前
年糕发布了新的文献求助10
2秒前
2秒前
隐形曼青应助rei402采纳,获得10
2秒前
3秒前
3秒前
香蕉觅云应助mix多咯采纳,获得10
4秒前
4秒前
5秒前
kzhao发布了新的文献求助30
5秒前
5秒前
5秒前
讨厌麻烦的小宏完成签到,获得积分10
5秒前
夕荀发布了新的文献求助10
6秒前
神勇初瑶发布了新的文献求助10
6秒前
思源应助heaven采纳,获得10
6秒前
7秒前
陈HT发布了新的文献求助10
7秒前
yesyesok发布了新的文献求助10
7秒前
LIX发布了新的文献求助10
7秒前
kayaaa发布了新的文献求助10
7秒前
望空发布了新的文献求助10
7秒前
jingmishensi发布了新的文献求助10
8秒前
8秒前
Rz发布了新的文献求助10
8秒前
xyx945应助等乙天采纳,获得10
8秒前
明天会更好完成签到,获得积分20
8秒前
8秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588119
求助须知:如何正确求助?哪些是违规求助? 4671184
关于积分的说明 14786238
捐赠科研通 4624496
什么是DOI,文献DOI怎么找? 2531592
邀请新用户注册赠送积分活动 1500217
关于科研通互助平台的介绍 1468240