Automatic Matching of Multimodal Remote Sensing Images via Learned Unstructured Road Feature

计算机科学 人工智能 计算机视觉 特征(语言学) 模式识别(心理学) 分割 钥匙(锁) 光学(聚焦) 计算机安全 语言学 光学 物理 哲学
作者
Kun Yu,Chengcheng Xu,Jie Ma,Bin Fang,Junfeng Ding,Xinghua Xu,Xianqiang Bao,Shaohua Qiu
出处
期刊:Remote Sensing [MDPI AG]
卷期号:14 (18): 4595-4595 被引量:7
标识
DOI:10.3390/rs14184595
摘要

Automatic matching of multimodal remote sensing images remains a vital yet challenging task, particularly for remote sensing and computer vision applications. Most traditional methods mainly focus on key point detection and description of the original image, thus ignoring the deep semantic feature information such as semantic road features, with the result that the traditional method can not effectively resist nonlinear grayscale distortion, and has low matching efficiency and poor accuracy. Motivated by this, this paper proposes a novel automatic matching method named LURF via learned unstructured road features for the multimodal images. There are four main contributions in LURF. To begin with, the semantic road features were extracted from multimodal images based on segmentation model CRESIv2. Next, based on semantic road features, a stable and reliable intersection point detector has been proposed to detect unstructured key points. Moreover, a local entropy descriptor has been designed to describe key points with the local skeleton feature. Finally, a global optimization strategy is adopted to achieve the correct matching. The extensive experimental results demonstrate that the proposed LURF outperforms other state-of-the-art methods in terms of both accuracy and efficiency on different multimodal image data sets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zg发布了新的文献求助10
刚刚
刚刚
1秒前
baobaoxiong完成签到,获得积分10
1秒前
1秒前
1秒前
隐形曼青应助雨碎寒江采纳,获得10
1秒前
1111111完成签到,获得积分10
3秒前
曦颜完成签到 ,获得积分10
3秒前
3秒前
三三发布了新的文献求助10
3秒前
3秒前
wwww发布了新的文献求助10
3秒前
轻松惜筠完成签到,获得积分10
4秒前
4秒前
5秒前
彼岸完成签到,获得积分10
5秒前
研友_pLw3vL发布了新的文献求助10
5秒前
Young完成签到,获得积分10
5秒前
科研小白发布了新的文献求助10
6秒前
HeWang发布了新的文献求助10
6秒前
Nia发布了新的文献求助10
6秒前
Akim应助wwww采纳,获得10
6秒前
6秒前
6秒前
7秒前
无花果应助133采纳,获得10
7秒前
JiangZaiqing发布了新的文献求助10
7秒前
8秒前
俊逸子默应助好好学习采纳,获得10
8秒前
8秒前
艳艳子完成签到,获得积分10
8秒前
平淡忻发布了新的文献求助10
9秒前
liying完成签到,获得积分10
9秒前
9秒前
军师完成签到,获得积分10
10秒前
10秒前
10秒前
研友_VZG7GZ应助取个名儿吧采纳,获得10
10秒前
迷人的月饼完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667772
求助须知:如何正确求助?哪些是违规求助? 4887765
关于积分的说明 15121847
捐赠科研通 4826643
什么是DOI,文献DOI怎么找? 2584209
邀请新用户注册赠送积分活动 1538157
关于科研通互助平台的介绍 1496386